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No Consistent Relationship between Gamma Power and Peak
Frequency in Macaque Primary Visual Cortex
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Neural activity in the gamma frequency range (“gamma”) is elevated during active cognitive states. Gamma has been proposed to play an
important role in cortical function, although this is debated. Understanding what function gamma might fulfill requires a better under-
standing of its properties and the mechanisms that generate it. Gamma is characterized by its spectral power and peak frequency, and
variations in both parameters have been associated with changes in behavioral performance. Modeling studies suggest these properties
are co-modulated, but this has not been established. To test the relationship between these properties, we measured local field potentials
(LFPs) and neuronal spiking responses in primary visual cortex of anesthetized monkeys, for drifting sinusoidal gratings of different
sizes, contrasts, orientations and masked with different levels of noise. We find that there is no fixed relationship between LFP gamma
power and peak frequency, and neither is related to the strength of spiking activity. We propose a simple model that can account for the
complex stimulus dependence we observe, and suggest that separate mechanisms determine gamma power and peak frequency.

Introduction
The gamma components (30 – 80 Hz) of the local field potential
(LFP) reflect coordinated, rhythmic voltage fluctuations (Buz-
saki, 2006), and have been found to be elevated in active brain
states (Fries et al., 2001; Pesaran et al., 2002). Gamma has been
proposed to play a role in stimulus feature binding (Gray et al.,
1989; Singer, 1999; Engel et al., 2001) and to form a dynamic
communication window for the interaction between neuronal
populations (Engel et al., 2001; Fries, 2009), although these func-
tions are debated (Roelfsema et al., 2004; Burns et al., 2010a,b,
2011; Chalk et al., 2010; Ray and Maunsell, 2010; Jia and Kohn,
2011).

The function gamma may fulfill depends in part on its power
and peak frequency, and both of these properties correlate with
behavioral performance (Womelsdorf et al., 2006; Edden et al.,
2009). Understanding whether changes in gamma power and
frequency are coupled is important for determining whether dis-
tributed groups of neurons with elevated gamma could be easily
related to each other: to function as a binding or communication
signal, the gamma frequencies in distributed neuronal groups
need to be similar (and coherent) so that spikes associated with

those different rhythms will have a consistent temporal relation-
ship (Atallah and Scanziani, 2009; Ray and Maunsell, 2010).

Models suggest gamma power is affected primarily by the
strength of drive to inhibitory neurons or to a recurrently con-
nected excitatory-inhibitory network (for review, see Bartos et
al., 2007; Tiesinga and Sejnowski, 2009; and Whittington et al.,
2011). The relationship between gamma power and peak fre-
quency have been studied less extensively but previous work sug-
gests that stronger drive, which produces more power, also yields
higher frequencies (Whittington et al., 1995; Traub et al., 1996a,
1997; Buia and Tiesinga, 2006). Peak frequency can also be af-
fected by synaptic kinetics and conductance (Whittington et al.,
1995; Traub et al., 1996a, 1997; Wang and Buzsáki, 1996; Brunel
and Wang, 2003), the balance between excitation and inhibition
(Brunel and Wang, 2003), and cortical feedback (Kang et al.,
2010).

The empirical relationship between gamma power and peak
frequency in cortex is unclear. Ray and Maunsell (2010) found
that raising stimulus contrast caused an increase in gamma power
and peak frequency in primary visual cortex (V1), consistent with
the suggestion that stronger drive leads to co-modulation of these
properties. However, other studies have indicated little or no
change in peak frequency with stimulus contrast (Henrie and
Shapley, 2005, Bartolo et al., 2011), or have shown that stimulus
manipulations that reduce power lead to a higher peak freqency
(Gieselmann and Thiele, 2008; Lima et al., 2010; Bartolo et al.,
2011). This has led to the suggestion that a critical determinant of
frequency is the size of the activated network (but see Traub et al.,
1996b; Gieselmann and Thiele, 2008; Schwarzkopf et al., 2012).

Here we provide a systematic evaluation of the relationship
between gamma power and peak frequency in V1 of anesthetized
macaque monkeys, by comparing responses for four different
visual stimulus manipulations. We also compared changes in
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gamma to simultaneously recorded neuronal activity. We found
a range of relationships between gamma power and its peak fre-
quency, and a dissociation of both from neuronal response
strength. We use a simple model to reproduce our physiological
findings, and to probe potential underlying mechanisms.

Materials and Methods
Data were collected from 5 adult male monkeys (Macaca fascicularis).
Animal preparation and general methods were similar to those described
by Jia et al. (2011). Anesthesia was induced with ketamine (10 mg/kg)
and maintained during surgery with isoflurane (1.0 –2.5% in 95% O2).
Sufentanil citrate (6 –18 �g/kg/h, adjusted as needed for each animal)
was injected intravenously to maintain anesthesia during recordings.
Vecuronium bromide (0.15 mg/kg/h) was used to suppress eye move-
ments. All procedures were approved by the Albert Einstein College of
Medicine at Yeshiva University and followed the guidelines in the United
States Public Health Service Guide for the Care and Use of Laboratory
Animals.

We implanted a �4 � 4 mm array with 96 recording electrodes (1 mm
in length and 0.4 mm spacing) in the upper layers of V1. At each record-
ing site, the raw voltage signal was filtered between 0.3 Hz and 250 Hz and
sampled at 1 kHz for LFP data, and between 250 Hz and 7.5 kHz for
spiking activity. Spiking activity that exceeded a user-defined threshold
was digitized at 30 kHz and sorted with Plexon Offline Sorter. Sorted
units at each recording site were grouped together and treated as multi-
unit activity at that site. To minimize contamination by 60 Hz noise, we
applied a fourth-order band-stop butterworth filter to the LFP data.

Visual stimuli were generated with custom software (EXPO) and pre-
sented on a calibrated CRT monitor (100 Hz refresh rate) placed 110 cm
from the monkey. Neuronal receptive fields were first mapped with
small, drifting gratings (0.6°; 250 ms duration) presented at a range of
spatial positions. We then centered sinusoidal gratings of 1 cycle/degree
drifting at 6.25 cycles/s on the aggregate receptive field. For experiments
manipulating grating size (1–10° diameter), stimuli were viewed monoc-
ularly. We observed similar effects when gratings were viewed binocu-
larly, as for the remaining manipulations described below. Each size was
presented at 16 different drift directions (22.5° spacing; 30 repetitions per
stimulus; 1 s presentations) at full contrast. For noise-masking experi-
ments, large (10° diameter), full contrast gratings drifting in 16 different
directions were masked with random spatial noise. Noise was generated
by selecting small patches (0.06 � 0.06°) from the original grating and
computing their mean luminance. These patches were then placed at
random locations on the image (Zhou et al., 2008). The proportion of the
gratings replaced by these patches was defined as the noise level; noise
was randomized on each frame. For manipulations of contrast, we used
large gratings (10°) with contrast ranging from 0.01 to 1, presented at 4
orientations (45° steps). Each set of stimuli was presented in a pseudo-
random sequence, with a gray screen interleaved to measure spontaneous
activity. Not every stimulus manipulation was run in each animal.

Power spectra of the LFP were calculated using multi-taper methods
with 8 tapers, for epochs 100 –1000 ms after stimulus onset (Jia et al.,
2011). Spiking responses were measured in identical epochs. Gamma
power was calculated as the summed power in the 25–55 Hz range, after
averaging spectra for individual stimulus orientations. Because LFP
power decreases at higher frequencies, we defined peak frequency as the
frequency of the maximum ratio between the spectra for stimulus-
induced and spontaneous activity (Henrie and Shapley, 2005) between
25 and 55 Hz. We obtained similar results when we used a frequency
range of 20 –100 Hz, but the stimulus-dependent changes in gamma
power were slightly smaller in magnitude and the changes in peak fre-
quency slightly larger. Our analysis focused on power in the 25–55 Hz
range because LFP components above �50 Hz behave similarly to local
spike activity (Ray and Maunsell, 2011; Zanos et al., 2011; perhaps be-
cause of spectral contamination by the action potential waveforms) and
differently from the low gamma activity that is our focus here. Calculat-
ing gamma power based on the ratio of the spectra for stimulus-driven
and spontaneous activity also provided results similar to those we report.

Simulations. To gain insight into how different visual stimuli could
modulate neuronal activity and the gamma components of the LFP, we
constructed a simple model with three components (Fig. 1)—local excit-
atory (E) and inhibitory (I) components (Wilson and Cowan, 1972;
Börgers and Kopell, 2008; Mazzoni et al., 2008) and a global (G) excit-
atory component (Kang et al., 2010). The local components can be
thought of as a recurrently connected cortical hypercolumn or set of such
columns; the G component can be thought of as a more global feedback,
which might involve long-range horizontal connections or feedback
from higher cortex (see also Results).

The dynamic interactions among E, I, and G are described by Equa-
tions 1–3. The interaction strengths are denoted by WSR, where S denotes
the sender and R the receiver; the interaction type (excitatory or inhibi-
tory) is denoted by the sign of WSR (positive or negative):

�E

dE

dt
� �E � WEE � �H�E� � �1 � MN�� � WIE � H�I�

� WGE � H�G� � IE �c, MN, �� (1)

�I

dI

dt
� �I � WEI � �H�E� � �1 � MN�� � WII � H�I�

� WGI � H�G� � II �c, MN, �� (2)

�G

dG

dt
� � �G � WEG � �H�E� � �1 � MN� � r2� (3)

where

H� x� �
x, if x � 0
0, otherwise . (4)

and

IE�c, MN, �� � Rmax �
c2

c2 � c50
2 � (1 � MN) � �1 � �cos��2�/2.

(5)

with II defined similarly. The parameter MN represents the level of mask-
ing noise; r, c, and � represent the stimulus radius, contrast and orienta-
tion, respectively. Other parameters are explained below.

Thus, in our model the local E component connects to the local I
component with coupling strength WEI, and to itself with strength WEE;
similarly, the local I component connects to E with strength WIE and to
itself with WII. The E component connects to the G component with
strength WEG, and this is weighted by the size of the stimulus (i.e., by the
square of its radius, r), a simple instantiation of pooling over multiple,
local E components. G provides input to E and I with coupling strength
WGE and WGI, respectively.

The �E, �I, and �G in Equations 1–3 are the time constants for E, I, and
G, respectively. Equation 4 implements a simple instantiation of a
“spike” threshold: only values of E, I, and G that exceed threshold (i.e.,
that are greater than zero) will affect other neurons.

Both E and I receive independent inputs (IE and II, respectively) that
are functions of stimulus contrast (c), orientation (�), and masking noise
(MN) (Eq. 5). The value of IE and II define the mean of a Poisson distri-
bution, from which we drew a random variable on each time step. The
orientation tuning of the input included a prominent untuned compo-
nent, so that all orientations provided substantial input. The contrast
dependence on the input was implemented with a hyperbolic ratio func-
tion (Albrecht and Hamilton, 1982), where Rmax is an arbitrary scaling
factor that sets the peak strength of the input and c50 defines the contrast
sensitivity.

We solved the equations numerically, with a time resolution of 0.1 ms
using the Euler method. We ran the model for 1.6 s with 50 repeats for
each stimulus condition. We analyzed responses starting 500 ms after
response onset, to ensure the network had settled to a steady state. We
used the average half-rectified value of E (i.e., (H( E)) as a measure of the
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mean firing rate, and the power and peak frequency in the spectrum of E
as measures of the power and peak frequency of the LFP.

Parameters. The values of coupling strengths and �s are provided in
Table 1. We assumed that local E has the fastest time constant (6 ms)
and the time constant for local I and global G are slower (15 and 19
ms). Rmax and c50 were set to 40 and 0.3, respectively, for IE, and to 32
and 0.3 for II.. These parameters were fixed for all simulations of
stimulus manipulations.

Variations in stimulus conditions were implemented by altering the
values of r, c, �, and MN. In simulations of the size experiment, we set
MN � 0, c � 1, � � 0 and varied r from 1 to 5. For the contrast experi-
ments, we used MN � 0, r � 5, � � 0 and varied c from 0.0156 to 1. For
the orientation experiments, we used MN � 0, r � 5, c � 1 and varied �
from 0 to 90°. For the noise experiment, we used r � 5, c � 1, � � 0 and
varied MN from 0 to 0.6. The range of MN was chosen to match the
physiological data; the magnitude of MN has no direct relationship to the
proportion of the grating replaced by noise.

Results
We measured neuronal firing rates and
LFP gamma power and peak frequency in
V1 of 5 anesthetized macaque monkeys,
for drifting sinusoidal gratings of different
sizes, contrasts, orientations and masked
with different levels of noise.

We first determined how gamma was
affected by grating size, ranging from 1 to
10° in diameter. We analyzed a common
set of sites across conditions—those that
were activated by the smallest grating. The
average LFP spectra showed nearly a two-
fold increase in gamma power with larger
gratings (Fig. 2A, left), with a more appar-
ent bump in the gamma range. We quan-
tified the change in gamma power (25–55
Hz) by normalizing to its maximum
across stimulus sizes at each site, and then
averaging across sites (n � 209 sites). This
normalized gamma power increased
monotonically from 0.67 � 0.02 for the
smallest grating to 0.93 � 0.01 for the
largest (p 	 0.0001, Wilcoxon signed-
rank test; Fig. 2A, middle, black). Similar
effects were seen in each individual animal
(faint black lines, indicating average effect
in each animal). Over the same range of
sizes, the gamma peak frequency at individ-
ual recording sites decreased from 50.5 �
0.2 to 37.9 � 0.1 Hz (p 	 0.0001, t test; Fig.
2A, middle, red; data from each animal in
faint red). Thus, gamma power and peak
frequency were modulated in opposite ways
by stimulus size: an increase in gamma
power was associated with a decrease in
peak frequency. The simultaneously re-

corded neuronal responses showed strong suppression for large
gratings, with the normalized spike rate decreasing from 0.86 � 0.02
to 0.41 � 0.02 (p 	 0.0001, Wilcoxon signed-rank test; Fig. 2A,
right).

We next measured gamma induced by large gratings (10°)
masked with different levels of noise. Noise was generated by
replacing different proportions of the gratings with random large
pixels of the same mean luminance (see Materials and Methods).
We used large gratings because these induced the most gamma
power, for which the peak frequency was most clearly defined.
Masking noise reduced gamma power (see also Jia et al., 2011),
and caused the peak frequency of the average spectrum to shift
lower (Fig. 2B, left; n � 228 sites). Across individual sites, nor-
malized gamma power fell twofold when gratings were masked
with 80% noise, and the average peak frequency shifted from
42.2 � 0.1 Hz to 30.1 � 0.4 Hz (p 	 0.0001, t test; Fig. 2B,
middle). Thus, for masking noise, gamma power and peak fre-
quency were positively correlated across stimulus conditions: a
decrease in gamma power was associated with a decrease in peak
frequency. Despite prominent changes in gamma, population
neuronal firing rates were not affected by noise masking
(ANOVA: F � 1.18, p � 0.14; Fig. 2B, right). The normalized
spike rate for the unperturbed gratings was indistinguishable
from the 80% noise condition (0.79 � 0.02 vs 0.78 � 0.01; p �
0.04, Wilcoxon signed-rank test).

Figure 1. Architecture of the model. The model consisted of local excitatory ( E) and inhibitory ( I) components and a global ( G)
component. The local components provided input to each other (WEI and WIE) and to themselves (WEE and WII). The global
component was driven by the E component (WEG), and provided excitation to both E and I (WGE and WGI, respectively). Both E and
I were driven by external input, IE and II. Red indicates excitatory input or connections; blue indicates inhibition.

Table 1. Parameters in the three-component model

E I G

� (seconds) 0.006 0.015 0.019
Coupling from E to WEE � 1.5 WEI � 3.5 WEG � 0.6
Coupling from I to WIE � 3.25 WII � 2.5 N/A
Coupling from G to WGE � 0.25 WGI � 0.5 N/A

N/A, Not applicable.
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As with masking noise, gamma power and peak frequency
were positively correlated for manipulations of stimulus contrast.
Increasing the contrast of a large grating (10° in diameter) en-
hanced both gamma power and peak frequency (Fig. 2C, left; n �
90 sites). Since there was no induced gamma power when stimu-
lus contrast was 0.01 or 0.032, no peak frequency was estimated
for those conditions. As stimulus contrast increased from 0.064
to 1, the peak frequency increased from 28.4 � 0.2 to 44.0 � 0.1

Hz (p 	 0.0001, t test), and stimulus-induced gamma power was
enhanced approximately fourfold (p 	 0.0001; Fig. 2C, middle).
As stimulus contrast increased from 0.01 to 1, the normalized
spike rate increased 
3-fold, from 0.31 � 0.02 to 0.98 � 0.01
(p 	 0.0001, Wilcoxon signed-rank test; Fig. 2C, right).

Finally, we measured the orientation tuning of gamma power
and peak frequency and compared these to neuronal spiking ac-
tivity. We used responses to large gratings (10°) drifting in 16

Figure 2. Gamma power, peak frequency, and neuronal firing rate for different stimulus manipulations in V1. A, Left, Power spectra of LFP for gratings of different sizes (n � 209 sites). Dashed
line indicates the gamma power for spontaneous activity. Middle, Peak frequency in the gamma range (thick red line) and normalized gamma power (thick black line). The faint lines indicate the
average data from each animal. Dashed line indicates the gamma power for spontaneous activity. Right, Normalized neuronal responses (thick black line). Faint lines indicate the average data from
each animal. B, Left, Power spectra of LFP for different levels of noise-masking (n � 228 sites). Middle, Peak frequency and normalized gamma power. Right, Normalized neuronal firing rate. C, Left,
Power spectra of LFP for different stimulus contrasts (n � 90 sites). Middle, Peak frequency and normalized gamma power. Right, Normalized neuronal responses. D, Left, Power spectra of LFP for
gratings of different orientations (n � 209 sites). Middle, Peak frequency and normalized gamma power. Right, Normalized neuronal responses. All error bars indicate SEM.
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different directions (conditions averaged in Fig. 2A). To quantify
across recording sites, we defined the preferred orientation (that
inducing maximal gamma power) at each site to be 0°. The aver-
age power spectra for a subset of orientations are shown in Figure
2D (left; same n � 209 sites as in Fig. 2A). On average, gamma
power at the preferred orientation was approximately twice that
of the orthogonal orientations. However, the peak frequency of
gamma was not significantly modulated by stimulus orientation,
with the peak frequency at the preferred and orthogonal orienta-
tions nearly indistinguishable (36.8 � 0.3 vs 36.6 � 0.3 Hz, p �
0.6, t test; Fig. 2D, middle). When arranged by the preferred
orientation of gamma power, spike rate tuning functions showed
a response at the preferred orientation that was significantly 	1,
indicating that the preferred orientation defined by spike rates
was often different from gamma at individual sites (Berens et al.,
2008; Jia et al., 2011).

Model of gamma generation
We simulated the stimulus dependence of spiking activity and
gamma power and peak frequency with a simple three compo-
nent model, an extended but simplified version of the model
developed by Kang et al. (2010). The model consisted of a local
excitatory (E), local inhibitory ( I), and global (G) excitatory
component (see Fig. 1 and Materials and Methods). The local E
and I components represent populations in a local V1 region,
such as in a cortical hypercolumn. The local E and I components
were recurrently connected—the excitatory component pro-
vided input to the inhibitory component (WEI) and to itself
(WEE), and similarly for the inhibitory component (WIE and
WII). Both the E and I components also received external and
independent Poisson-distributed input (IE and II). This architec-
ture captures the basic pyramidal-interneuron network gamma
(PING) model, commonly used to model gamma generation
(Bartos et al., 2007; Tiesinga and Sejnowski, 2009; Whittington et
al., 2011).

The third component—the global or G component—repre-
sents a more spatially extensive mechanism. The global compo-
nent integrates excitatory activity in multiple local regions

(WEG), and affects both the local E and I
components through excitatory connec-
tions (WGE and WGI, respectively). G
might arise from long-distance horizontal
connections between columns in V1 or
feedback from higher visual areas (Ange-
lucci and Bresslof, 2006). Figure 3, A and
B, shows the behavior of the E component
of the model for a small and large high
contrast “gratings” (i.e., input), respec-
tively. The mean activity of E is higher for
the smaller stimulus. Spectral analysis
shows the presence of elevated gamma
frequency components in the activity of E,
which are weaker and at a higher peak fre-
quency for small gratings (centered
around 50 Hz, Fig. 3C) than large gratings
(�40 Hz, Fig. 3D). The peak frequency of
gamma shifts lower as power increases be-
cause the time constant for the global
component, recruited more strongly by
the large stimulus, is slower than for the
local E and I, lowering the resonant fre-
quency of the network. Note that for both
simulations gamma power fluctuates in

time, consistent with previous analysis of physiological data
(Burns et al., 2010a,b, 2011).

To compare our simulations with our physiological data, we
equated the half-rectified mean activity of E—which we refer to
as response strength—with measured firing rate. We did so be-
cause most neurons in cortex are excitatory and extracellular
recording techniques are biased toward spikes arising from larger
neurons (i.e., excitatory pyramidal cells); the behavior of I was
qualitatively similar, except as noted below. We quantified the
total power in the gamma range (25–55 Hz) and the gamma peak
frequency for the E component, as a measure of the LFP. Figure
4A shows the behavior of these three variables for a range of
stimulus sizes. The model produces a decrease in response
strength (approximately a twofold decrease) and gamma peak
frequency (approximately a 10 Hz decrease), and an increase in
gamma power (a near doubling), as observed in our physiological
data.

We simulated our dynamic noise-masking results by altering
input strength and excitatory coupling. This captured the strong
decrease in gamma power and peak frequency with higher levels
of noise masking, with a nearly maintained response strength
(Fig. 4B). This stimulus manipulation was the most difficult to
simulate, and required reducing external input and excitatory
coupling (to both the E and I components), but not inhibitory
coupling. This might reflect that excitatory synapses are more
prone to synaptic depression than many inhibitory ones during
high-frequency or transient drive (Thomson and Deuchars,
1997; Gupta et al., 2000), such as that likely provided by the
dynamic noise we used. Note that although we reduced the
strength of excitatory input and recurrent excitation, response
strength decreased only slightly (18% decrease in Fig. 4B). This is
because these manipulations reduced the inhibitory response
strongly (�40% over the same range), largely offsetting the loss
of excitation. Implementing the same manipulation in a model
with weaker recurrent inhibition (smaller values of WIE and WII)
produced a strong loss of response strength (data not shown).

To simulate the effect of manipulating the contrast of a large
grating, we altered the strength of external input to the network

Figure 3. Example simulation responses. A, Response of the E component to a small grating (r � 3), as a function of time. Note
the strong mean response, and the presence of transient gamma fluctuations. Smaller gratings (r � 1 or 2) produced stronger
responses, but too little gamma power to visualize in a single trial. B, Response of the E component to a large grating (r � 5). Note
the decrease in mean response and enhancement of gamma band activity. C, D, Spectrogram of the epochs shown in A and B,
respectively. Gamma activity is weaker and at a higher frequency for the small grating. Spectra were computed in a sliding 512 ms
window, centered at the time indicated; spectra were smoothed for display only, by convolving a two-dimensional Gaussian kernel
with the data.

Jia, Xing et al. • Gamma Power and Peak Frequency J. Neurosci., January 2, 2013 • 33(1):17–25 • 21



(IE and II; see Materials and Methods). At higher contrasts, input
was stronger. Under this regime, the model produced higher fir-
ing rates and stronger gamma power with a higher peak fre-
quency (Fig. 4C), as observed physiologically (Fig. 2C). A similar
behavior has been observed in PING networks, in which power
and peak frequency both increase with input drive (Whittington
et al., 2011). This occurs because gamma fluctuations reflect the
reciprocal interaction between the excitatory and inhibitory pop-
ulations: excitation recruits inhibition which dampens excita-
tion. As the drive to the network increases, this cyclic dynamic is
enhanced and sped up. In our model this is also true, but this

mechanism alone produces relatively small changes in peak fre-
quency (�2 Hz). The shift in peak frequency in our model is
enhanced by the G component. As input weakens, the influence
of the G component is stronger relative to the local E and I com-
ponents, shifting the resonant frequency lower. Our model
would thus predict that manipulating the contrast of a small grat-
ing—for which the influence of the G component is substan-
tially lower—would have a weak effect on peak frequency (see
also below). This may explain different reported effects of
altering stimulus contrast on gamma peak frequency (see
Discussion).
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Figure 4. Simulated gamma power, peak frequency and neuronal firing rate for different stimulus manipulations. A, Left, Power spectra of LFP for gratings of different sizes Middle, Peak frequency in the gamma range
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We simulated the effect of altering the orientation of a large
grating by assuming an orientation bias in the input to local E and
I (Eq. 5), consistent with our previous work suggesting the orien-
tation tuning of gamma may reflect a weak bias for some stimulus
orientations in a region of V1 (Jia et al., 2011). We defined the
input to be maximal for an orientation of 0°. Figure 4D shows
that as the stimulus orientation deviates from 0°, there is a de-
crease in gamma power and firing rate but gamma peak fre-
quency is unaltered, consistent with our physiological results.

Note that manipulations of stimulus contrast and orientation
both involve only altering the strength of input to the network.
However, lowering contrast caused both gamma peak frequency
and power to decrease, whereas manipulations of stimulus orien-
tation altered power but left peak frequency unaffected. This is
because power is more sensitive to a reduction in input than peak
frequency. Power decays linearly with weaker input to model
(both IE and II; black line in Fig. 5A); peak frequency shows
evidence of saturation with input strength and only changes sub-
stantially when input is reduced more than twofold (red line in
Fig. 5B). Unlike the simulations, our physiological data show that
power and peak frequency are similarly sensitive to reducing
stimulus contrast (Fig. 2C; see also Ray and Maunsell, 2010).
Thus the simulations capture the difference in gamma power and
peak frequency for low and full contrast stimuli, but not how
these properties are altered by smaller manipulations of contrast.

We explored an alternative manipulation to account for the sen-
sitivity of gamma to stimulus contrast. Decreasing stimulus contrast
is known to slow neuronal response dynamics and latency in V1
(Gawne et al., 1996; Carandini et al., 1997), an effect that can be
captured by an increase in the neuronal membrane time constants
(Carandini et al., 1997). We therefore determined the effect of

lengthening the time constants in our model
(�E, �I, �G) by a scaling factor that varied
from 1 to 1.4. This had the minimal effect on
gamma power (increasingly faint lines in
Fig. 5A) but caused a dramatic reduction in
gamma peak frequency (increasingly faint
lines in Fig. 5B). Response strength (mean
value of E component) was not affected by
this manipulation (Fig. 5C). Thus, if reduc-
ing stimulus contrast causes both a weaker
input drive and a slight slowing of dynamics,
both power and peak frequency would be
expected to decrease as contrast is reduced.

For comparison, the corresponding re-
sults for lowering the contrast of a small
grating are shown in Figure 5D–F. As men-
tioned previously, small gratings do not
generate strong activity in the G component
and, as a result reducing input, has a mini-
mal effect on peak frequency (horizontal
lines in Fig. 5E). Altering network time con-
stants, on the other hand, does reduce the
peak frequency (increasingly faint red line in
Fig. 5E) and has minimal effect on power
(Fig. 5D). Thus, for large gratings weaker
input strength and slower network time
constants both reduce power, whereas for
small gratings only the latter contributes.

Discussion
We tested the relationship between LFP
gamma power and peak frequency for four
different visual stimulus manipulations. In-

creasing grating size induced a stronger gamma rhythm with a
lower peak frequency, and suppressed neuronal responses.
Lowering contrast or adding masking noise reduced gamma power
and lowered the peak frequency; spike rates fell significantly as con-
trast was lowered, but showed no noticeable change with noise
masking. Stimulus orientation strongly modulated gamma power
but had little effect on peak frequency. Thus, our results show that
gamma power does not have a fixed relationship to its peak fre-
quency, nor to neuronal firing rates. An increase in gamma power
may be associated with an increase (contrast and masking), decrease
(size) or no change (orientation) in peak frequency, and with either
an increase (contrast), decrease (size) or no change (masking and
orientation) in neuronal response strength.

Our observations of how gamma is affected by stimulus size are
consistent with those of Gieselmann and Thiele (2008) and Ray and
Maunsell (2011). Our measurements with stimulus contrast are
consistent with those of Ray and Maunsell (2010), but not with two
other studies which showed that higher contrast stimuli induced
more gamma power without any indication of a shift in peak fre-
quency (Henrie and Shapley, 2005; Bartolo et al., 2011). This may be
due to their use of smaller stimuli, which induce a broadband in-
crease in power but a weaker gamma spectral “bump” (Jia et al.,
2011). Our model shows that shifts in peak frequency should be
smaller when the network is driven with a small stimulus, so long as
the weakened input is not accompanied by a prominent reduction in
network time constants. Consistent with the suggestion that gamma
is strongly influenced by a global, integrative mechanism, gamma is
particularly strong in the superficial layers (Xing et al., 2012) where
the influence of long-range horizontal connections and feedback is
prominent (Angelucci and Bresslof, 2006).

Figure 5. Dependence of model gamma power and peak frequency on input strength and time constants. A, Gamma power as a
function of input strength for a large grating (r�5). Input strength of 1 corresponds to values of Rmax �40, c�1, MN�0,��0 for IE,
as in Equation 5; Rmax � 32 for II. Weaker inputs were provided by scaling IE and II by the values indicated on the abscissa. Different line
shades correspond to simulations in which the model time constants (�) were multiplied by the factor indicated. B, Same as A but for
gamma peak frequency. C, Same as A but for response strength. D–F, Same as A–C but for small gratings (r � 1).
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Previous studies have shown that gamma power is orientation selec-
tive(Frienetal.,2000;Berensetal.,2008;Jiaetal.,2011),withoutreport-
ing whether differences in power are accompanied by systematic
changes in peak frequency. Our results show that changing grating ori-
entation had little effect on peak frequency despite robust changes in
power. Our noise-masking manipulations are also novel and were im-
portant for showing that changes in gamma power and peak frequency
need not involve changes in neuronal population response strength.
Zhouetal.(2008)usedasimilarstimulusbutwithstationaryratherthan
dynamic masking noise. Their data did not indicate a shift in peak fre-
quency of gamma-modulated spiking activity. This could be due to a
difference between the effects of static versus dynamic noise, or to
gamma measurements of LFP power being more sensitive than those
based on spiking activity (Zeitler et al., 2006).

Previous modeling work has provided a limited exploration of
the relationship between these two properties of gamma. Whitting-
ton et al. (2011) summarized the relationship between gamma
power and peak frequency suggested by several different models of
gamma generation. In an interneuron network gamma model
(ING), tonic excitation of an interneuron network generates
gamma, with stronger drive producing greater power and higher
peak frequency. In the PING model, perhaps the most relevant for
cortical rhythms, gamma generation involves recurrent connections
between interneurons and excitatory neurons. Gamma power and
frequency increase with the strength of drive to either excitatory or
inhibitory cells in the network (Traub et al., 1997). In the persistent
gamma model, not typically invoked to explain cortical gamma
(Bartos et al., 2007; Tiesinga and Sejnowski, 2009), an increase in
gamma power does not require higher network firing rates nor does
it lead to a change in peak frequency (Whittington et al., 2011). Thus,
in their most straightforward instantiation, these models suggest
peak frequency should increase with power (and network drive) or
remain unchanged (Whittington et al., 2011), inconsistent with our
findings.

We extended the basic PING architecture to include a feedback
component and studied the activity level, gamma power, and
gamma peak frequency it produced for a range of manipulations.
The simulations were able to reproduce the physiological data, and
suggested the importance of several distinct mechanisms. First,
gamma peak frequency is modulated by a global input which could
reflect long range horizontal interactions or feedback. This compo-
nent is most prominent for large stimuli, and it enhances gamma
power and lowers peak frequency. Similar to the effect of reducing
stimulus size, Lima et al. (2010) reported that superimposing one
grating on another reduces power but enhances peak frequency (see
also Bartolo et al., 2011). Lima et al. (2010) suggest that this reflects
competition between subsets of neurons activated by the two com-
ponent gratings; in our formulation, such an effect could be similarly
phrased as the withdrawal of a global, coordinating input when two
gratings are presented.

We found that gamma peak frequency and power had different
sensitivities to the strength of external input. Power decreased read-
ily when input was weakened, but peak frequency was only altered
when input was reduced substantially. Small changes in the time
constant of the model had a nearly opposite influence: they strongly
altered peak frequency, but had much weaker effect on gamma
power. This is consistent with the behavior of ING models, in which
longer inhibitory time constants result in lower gamma peak fre-
quency (Traub et al., 1996a; Wang and Buzsáki, 1996), but can either
increase or decrease network coordination (Wang and Buzsáki,
1996).

Finally, we show that a modulation of input strength and recur-
rent excitation can reduce both gamma power and peak frequency

without altering response strength, as we observed in our noise
masking experiments. We speculate that this may reflect the stronger
synaptic depression of excitatory synapses to transient input. A re-
cent study found that gamma peak frequency, measured with mag-
netoencephalography, is lower in individuals with larger cortical
surface area (Schwarzkopf et al., 2012). These authors speculate that
large cortical surface area may be associated with weaker coupling
between columns, a mechanism similar to the weaker excitatory
coupling we used to implement the effects of masking noise. We note
that in the ING model, heterogeneous drive to inhibitory cells—as
might occur with dynamic noise—reduces power (Wang and Buz-
sáki, 1996), but it is not clear whether this would also explain the
drop in peak frequency. An alternative explanation for our noise
masking data is that gamma is disrupted by transient input (Kruse
and Eckhorn, 1996) and builds slowly after the abrupt onset of a
stimulus (Ray and Maunsell, 2010; Jia et al., 2011). The weak gamma
we observe with high levels of masking noise may thus be due to the
disruption of the build-up of network gamma dynamics by noise
that was renewed on every frame.

Previous modeling work has shown that gamma peak frequency
is sensitive to the balance of excitation to inhibition (Brunel and
Wang, 2003), with a higher ratio favoring a lower frequency. Fur-
ther, recent measurements in human cortex suggest gamma fre-
quency is lower when GABA concentration is depressed, although
the relationship to inhibitory neuron activity is unclear (Edden et al.,
2009). We did not explore the effect of altering the balance between
excitation and inhibition in our model, beyond that caused by mod-
ulating recurrent excitation for our noise-masking simulations. It is
certainly possible that our stimulus manipulations also altered the
balance of excitation and inhibition in V1. However, whole-cell re-
cordings in cat V1 show that the suppression of firing rate that occurs
with larger grating stimuli involves a withdrawal of both excitatory
and inhibitory input, relative to that seen in response to a small
grating (Ozeki et al., 2009; see Haider et al., 2010 for contrary find-
ings using transient presentations of natural scenes). Similarly, high
contrast gratings of the preferred orientation cause an increase in
both excitation and inhibition relative to low contrast or non-
preferred stimuli (Anderson et al., 2000; Priebe and Ferster, 2006).
To our knowledge, similar measurements have not been made for
masking noise. Thus, changes in stimulus size, contrast, and orien-
tation appear to modulate excitation and inhibition similarly in local
networks, although we cannot rule out some change in their balance.

Regardless of the network effects recruited by our stimulus ma-
nipulations, we show clearly that the mechanisms determining
gamma power and peak frequency must be distinct, as these prop-
erties have no consistent relationship. Further, these properties
should not be ascribed solely to network drive, the spatial extent of
the activated ensemble, or the balance between excitation and inhi-
bition, as suggested by previous studies. As a result of the dissociation
of gamma power and peak frequency, only ensembles receiving vi-
sual input with matched contrast, noise perturbation, and size (or
embedded in similar spatial contexts) would have a similar gamma
peak frequency, and thus could maintain a consistent temporal re-
lationship. Deviations in any of these properties would disrupt the
ability of gamma to fulfill any of its proposed functions, even be-
tween ensembles with clearly elevated gamma power.
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Wang XJ, Buzsáki G (1996) Gamma oscillation by synaptic inhibition in a
hippocampal interneuronal network model. J Neurosci 16:6402– 6413.
Medline

Whittington MA, Traub RD, Jefferys JG (1995) Synchronized oscillations in
interneuron networks driven by metabotropic glutamate receptor activa-
tion. Nature 373:612– 615. CrossRef Medline

Whittington MA, Cunningham MO, LeBeau FE, Racca C, Traub RD (2011)
Multiple origins of the cortical gamma rhythm. Dev Neurobiol 71:92–106.
CrossRef Medline

Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in lo-

Jia, Xing et al. • Gamma Power and Peak Frequency J. Neurosci., January 2, 2013 • 33(1):17–25 • 25

http://dx.doi.org/10.1016/S0079-6123(06)54005-1
http://www.ncbi.nlm.nih.gov/pubmed/17010705
http://dx.doi.org/10.1016/j.neuron.2009.04.027
http://www.ncbi.nlm.nih.gov/pubmed/19477157
http://dx.doi.org/10.1111/j.1460-9568.2011.07877.x
http://www.ncbi.nlm.nih.gov/pubmed/22081989
http://dx.doi.org/10.1038/nrn2044
http://www.ncbi.nlm.nih.gov/pubmed/17180162
http://dx.doi.org/10.3389/neuro.01.037.2008
http://www.ncbi.nlm.nih.gov/pubmed/19225593
http://dx.doi.org/10.1162/neco.2007.07-06-289
http://www.ncbi.nlm.nih.gov/pubmed/18047409
http://dx.doi.org/10.1152/jn.01095.2002
http://www.ncbi.nlm.nih.gov/pubmed/12611969
http://dx.doi.org/10.1007/s10827-006-6358-0
http://www.ncbi.nlm.nih.gov/pubmed/16683206
http://dx.doi.org/10.1523/JNEUROSCI.5319-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20237274
http://dx.doi.org/10.1523/JNEUROSCI.0743-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/20943914
http://dx.doi.org/10.1523/JNEUROSCI.0660-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21715631
http://www.ncbi.nlm.nih.gov/pubmed/9334433
http://dx.doi.org/10.1016/j.neuron.2010.03.013
http://www.ncbi.nlm.nih.gov/pubmed/20399733
http://dx.doi.org/10.1523/JNEUROSCI.4426-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/20016087
http://dx.doi.org/10.1038/35094565
http://www.ncbi.nlm.nih.gov/pubmed/11584308
http://dx.doi.org/10.1046/j.1460-9568.2000.00025.x
http://www.ncbi.nlm.nih.gov/pubmed/10762373
http://dx.doi.org/10.1146/annurev.neuro.051508.135603
http://www.ncbi.nlm.nih.gov/pubmed/19400723
http://dx.doi.org/10.1126/science.1055465
http://www.ncbi.nlm.nih.gov/pubmed/11222864
http://www.ncbi.nlm.nih.gov/pubmed/8871243
http://dx.doi.org/10.1111/j.1460-9568.2008.06358.x
http://www.ncbi.nlm.nih.gov/pubmed/18702717
http://dx.doi.org/10.1038/338334a0
http://www.ncbi.nlm.nih.gov/pubmed/2922061
http://dx.doi.org/10.1126/science.287.5451.273
http://www.ncbi.nlm.nih.gov/pubmed/10634775
http://dx.doi.org/10.1016/j.neuron.2009.12.005
http://www.ncbi.nlm.nih.gov/pubmed/20152117
http://dx.doi.org/10.1152/jn.00919.2004
http://www.ncbi.nlm.nih.gov/pubmed/15703230
http://dx.doi.org/10.1371/journal.pbio.1001045
http://www.ncbi.nlm.nih.gov/pubmed/21556334
http://dx.doi.org/10.1523/JNEUROSCI.0645-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21697389
http://dx.doi.org/10.1007/s10827-009-0190-2
http://www.ncbi.nlm.nih.gov/pubmed/19862612
http://dx.doi.org/10.1073/pnas.93.12.6112
http://www.ncbi.nlm.nih.gov/pubmed/8650228
http://dx.doi.org/10.1093/cercor/bhp218
http://www.ncbi.nlm.nih.gov/pubmed/19812238
http://dx.doi.org/10.1371/journal.pcbi.1000239
http://www.ncbi.nlm.nih.gov/pubmed/19079571
http://dx.doi.org/10.1016/j.neuron.2009.03.028
http://www.ncbi.nlm.nih.gov/pubmed/19477158
http://dx.doi.org/10.1038/nn890
http://www.ncbi.nlm.nih.gov/pubmed/12134152
http://dx.doi.org/10.1038/nn1660
http://www.ncbi.nlm.nih.gov/pubmed/16520737
http://dx.doi.org/10.1016/j.neuron.2010.08.004
http://www.ncbi.nlm.nih.gov/pubmed/20826318
http://dx.doi.org/10.1371/journal.pbio.1000610
http://www.ncbi.nlm.nih.gov/pubmed/21532743
http://dx.doi.org/10.1038/nn1304
http://www.ncbi.nlm.nih.gov/pubmed/15322549
http://dx.doi.org/10.1523/JNEUROSCI.4771-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22279235
http://dx.doi.org/10.1093/cercor/7.6.510
http://www.ncbi.nlm.nih.gov/pubmed/9276176
http://dx.doi.org/10.1016/j.neuron.2009.09.009
http://www.ncbi.nlm.nih.gov/pubmed/19778503
http://www.ncbi.nlm.nih.gov/pubmed/8782110
http://dx.doi.org/10.1038/383621a0
http://www.ncbi.nlm.nih.gov/pubmed/8857537
http://dx.doi.org/10.1023/A:1008839312043
http://www.ncbi.nlm.nih.gov/pubmed/9154520
http://www.ncbi.nlm.nih.gov/pubmed/8815919
http://dx.doi.org/10.1038/373612a0
http://www.ncbi.nlm.nih.gov/pubmed/7854418
http://dx.doi.org/10.1002/dneu.20814
http://www.ncbi.nlm.nih.gov/pubmed/21154913


calized populations of model neurons. Biophys J 12:1–24. CrossRef
Medline

Womelsdorf T, Fries P, Mitra PP, Desimone R (2006) Gamma-band syn-
chronization in visual cortex predicts speed of change detection. Nature
439:733–736. CrossRef Medline

Xing D, Yeh CI, Burns S, Shapley RM (2012) Laminar analysis of visually
evoked activity in the primary visual cortex. Proc Natl Acad Sci U S A
109:13871–13876. CrossRef Medline

Zanos TP, Mineault PJ, Pack CC (2011) Removal of spurious correlations

between spikes and local field potentials. J Neurophysiol 105:474 – 486.
CrossRef Medline

Zeitler M, Fries P, Gielen S (2006) Assessing neuronal coherence with
single-unit, multi-unit, and local field potentials. Neural Comput 18:
2256 –2281. CrossRef Medline

Zhou Z, Bernard MR, Bonds AB (2008) Deconstruction of spatial integrity
in visual stimulus detected by modulation of synchronized activity in cat
visual cortex. J Neurosci 28:3759 –3768. CrossRef Medline

25a • J. Neurosci., January 2, 2013 • 33(1):17–25 Jia, Xing et al. • Gamma Power and Peak Frequency

http://dx.doi.org/10.1016/S0006-3495(72)86068-5
http://www.ncbi.nlm.nih.gov/pubmed/4332108
http://dx.doi.org/10.1038/nature04258
http://www.ncbi.nlm.nih.gov/pubmed/16372022
http://dx.doi.org/10.1073/pnas.1201478109
http://www.ncbi.nlm.nih.gov/pubmed/22872866
http://dx.doi.org/10.1152/jn.00642.2010
http://www.ncbi.nlm.nih.gov/pubmed/21068271
http://dx.doi.org/10.1162/neco.2006.18.9.2256
http://www.ncbi.nlm.nih.gov/pubmed/16846392
http://dx.doi.org/10.1523/JNEUROSCI.4481-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18385334

	No Consistent Relationship between Gamma Power and Peak Frequency in Macaque Primary Visual Cortex
	Introduction
	Materials and Methods
	Results
	Model of gamma generation
	Discussion
	References


