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Abstract 
The visual cortex is organized hierarchically, but 
extensive recurrent pathways make it challenging to 
decipher the flow of information with single neuron 
resolution. Here, we characterize spiking interactions in 
populations of neurons from six interconnected areas 
along the visual hierarchy in awake mice. We generated 
multi-area, directed graphs of neuronal communication 
and uncovered two spatially-distributed functional 
modules. One module is positioned to transmit 
feedforward sensory signals along the hierarchy, while 
the other receives convergent input and engages in 
recurrent processing. The modules differ in layer and 
area distributions, convergence and divergence, and 
population-level temporal dynamics. These results reveal 
a neuronal-resolution cortical network topology in which 
distinct processing modules are interlaced across 
multiple areas of the cortical hierarchy.  
 

Main text 

Sensory information processing in the neocortex 
involves signal representation, transformation, and 
transmission between processing levels or modules (1). 
Whereas stimulus representation (such as single 
neuron tuning preference and population coding) has 
been extensively studied (2–6), the principles by which 
spiking signals are transmitted between neuronal 
populations in the cortical network are unclear (7). The 
mammalian visual system, from mice to primates, is 
organized as a hierarchy of areas (8, 9). Cortical areas 
at different levels of the hierarchy are thought to 
represent distinct stages of processing linked by 
feedforward (FF) and feedback (FB) projections. 
However, signal transmission is unlikely to follow a 
simple path up and down the hierarchy due to 
substantial recurrent connections between areas at 
different hierarchical levels (9, 10). For example, the 
primary visual cortex (V1) has projections to all higher 
visual areas (9, 11), and single cells can project in 
parallel to multiple areas via branching axons (12). 
Given the complexity of inter-area connections, the 
logic of signal propagation at the cellular-scale is hard 
to elucidate. Tracking signal propagation in such a 
distributed and recurrent network requires 
measurement of large numbers of interacting neurons 

both within and between cortical areas (13), combined 
with computational tools to reveal the logic of these 
interactions.  

We previously built a recording platform with multiple 
Neuropixels probes to make simultaneous spike 
measurements from large populations of neurons in the 
mouse brain and have used this to generate a massive 
open database of spiking activity across six areas of the 
visual cortical hierarchy in the mouse brain (14) (Fig. 
1A). Here we combine functional connectivity analysis, 
clustering algorithms, and network analysis (15) to 
discover functional modules of neurons that 
differentially process signals in this visual cortical 
network. 

In the mouse visual system, each cortical area has its 
own map of visual space (16), and resides at a different 
hierarchical level as determined both anatomically (9, 
17) and physiologically (14): area V1 is at the bottom of 
the hierarchy, followed by areas RL/LM, AL, PM, and 
AM at the top (Fig. 1A). Each of the experimental 
recording sessions in this study yielded 632 ± 18 
simultaneously recorded neurons (a.k.a. sorted units 
(14)) distributed across cortical layers and areas (n = 19 
mice, mean ± SEM) (Fig. 1B). To facilitate functional 
connectivity analysis, neurons were filtered by firing 
rate and receptive field location (n = 3487; 29% of total 
units recorded across all mice; see Methods and Fig. 
S1). 

Full-field drifting grating stimuli were used to provide 
a strong sensory input to the system. Consistent with 
the known visual hierarchy in the mouse (9, 14), the 
mean response latency in each area followed a 
sequential progression (Fig. 1C), yet all areas were co-
active for substantial portions of the sensory response, 
thereby providing opportunities for recurrent 
interactions.  

To characterize functional interactions relevant to 
signal transmission during sensory drive, in each 
mouse we quantified spiking correlations between all 
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Figure 1. Identification of functional modules in multi-area spike recordings. A) Top: schematic of experimental setup. 
Bottom: Neuropixels recordings from 6 visual cortical areas of mouse left hemisphere. Retinotopic sign map is overlaid on 
vasculature image to guide area targeting. Right: replotting of anatomical hierarchy score from (9) Fig. 6e. B) Raster plot of 536 
simultaneously recorded neurons during drifting gratings stimulation (6 sequential trials are shown, each with 2 s grating 
presentation followed by 1 s gray period). C) Normalized PSTHs in response to grating stimuli from 6 visual cortical areas for 
selected units. D) Example jitter-corrected CCG between a V1 and an LM neuron (peak offset = 3 ms). The connection weight 
is the difference of the CCG in a 13 ms window before and after 0 time lag. E) Directed cellular-scale connectivity matrix from 
one example mouse. Neurons are sorted by area and depth. F) Clustering procedure and result from example mouse. G) 
Connectivity profiles of three functional clusters from the example mouse. H) Functional connection strength averaged over all 
neurons in each cluster across all mice (n = 19 mice; Error bars show 95% confidence interval). Mean connection strength of 
cluster 1 is not significantly different from 0 (1-sample t-test, p = 0.02). Cluster 2 is significantly positive (p = 1.3e-62). Cluster 3 
is significantly negative (p = 1.5e-43).
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pairs of neurons using jitter-corrected cross- 
correlogram (CCG) analysis, which captures relative 
spike timing between two neurons within the jitter 
window (25 ms) but removes stimulus-locked signals 
and correlations longer than the jitter window (18, 19). 
For each neuronal pair we quantified a connection 
weight by computing the difference of the CCG in a 13 
ms window before and after 0 time lag, which reflects 
functional interactions within that delay window (Fig. 
1D).The sign of this weight describes the signal flow 
direction (temporally leading or following) between pairs 
of neurons. Computing this for all pairs produced a 
connectivity matrix describing the directed, brief 
timescale functional interactions of all simultaneously 
recorded neurons in each mouse (Fig. 1E). These 
functional connectivity matrices displayed non-random 
structure (Fig. S2), and inspection suggested there 
existed separable modular components consisting of 
groups of neurons sharing similar patterns of functional 
connectivity. 

To systematically identify sets of source neurons with 
shared functional connectivity patterns, we clustered 
the connectivity matrix by treating connections from 
each source neuron to all target neurons as features 
(Fig. 1E,F; Fig. S3; see Methods for details). In each 
mouse, this procedure yielded three robust clusters of 
source neurons (Fig. S4 and Fig. S5): cluster 1 mostly 
had weak connections; neurons in cluster 2 were 
dominated by strong positive connection weights 
indicating they tended to drive/lead the network activity, 
whereas neurons in cluster 3 were dominated by strong 
negative connection weights indicating they are mainly 
driven-by/follow activity in the network (Fig. 1G). Given 
the bias in the proportion of positive and negative 
connection weights from each cluster (and its functional 
implication of directionality), we refer to the set of cluster 
2 source neurons as the ‘driver’ module and the set of 
cluster 3 source neurons as the ‘driven’ module (Fig. 
1H). Supporting the robustness of these clusters, we 
observed similar network modules using spectral 
clustering and bi-clustering algorithms (20) (Fig. S4). 

Graph theory suggests network topology constrains 
patterns of signal flow (21). Network convergence (input 
to one neuron from many others) and divergence 
(output from one neuron to many others) are two 
network motifs that differentially support the distribution 
versus integration of signals (22). In our recordings, the 
mean connection weight of the neurons in the two 
modules indicates they likely have distinct convergence 
and divergence properties. To quantify this directly, we 
computed convergence and divergence of individual 
neurons within each module. The divergence of each 
source neuron was determined by the fraction of the 

network to which it provided input (weight > 10-6; 
threshold value was defined by half of the standard 
deviation of the weight distribution across all mice; see 
Methods); likewise, the convergence was computed as 
the fraction of neurons in the network providing inputs 
to each neuron (weight < -10-6). The driver module had 
higher divergence than the driven module (Fig. 2A; 2-
way ANOVA across areas, between modules F = 
1058.6, p = 3e-188; among areas F = 33.2, p = 1e-32; 
interaction F = 3.0, p = 0.013). In contrast, the driven 
module had higher convergence (Fig. 2B; between 
modules F = 239.9, p = 5.6e-51; among areas F = 20.6, 
p = 3.9e-20; interaction F = 3.1, p = 0.007). 
Consequently, neurons in the driver module are better 
positioned to distribute information, whereas neurons in 
the driven module are better positioned for signal 
integration. This result reinforces the notion that the 
driver and driven modules perform distinct network 
operations.  

In which cortical areas and layers do neurons in these 
separate modules reside? Neurons in both modules 
were spatially distributed across all levels of the cortical 
hierarchy rather than being localized to specific regions 
(Fig. 2C). Nonetheless, the relative proportion of 
neurons in the two modules showed area biases. 
Overall, the fraction of driver neurons gradually 
decreased along the hierarchy (Fig. 2C, right; 
Spearman’s correlation with each area’s hierarchical 
position (9): r = -0.89, p = 0.019), whereas driven 
neurons increased (Spearman’s correlation = 0.89, p = 
0.019 for driven module).  

Both driver and driven neurons were present across 
cortical layers, but showed laminar biases. Driver 
neurons were enriched in the middle and superficial 
layers, whereas driven neurons were more common in 
deeper cortical layers (Fig 2D; layers were defined by 
current source density analysis, see Fig S6). Previous 
anatomical tracing studies have shown that neurons 
mediating feedforward projections tend to originate in 
superficial layers of the source area (8, 23), and the 
fraction of feedforward projecting neurons in superficial 
layers decreases along the hierarchy (24, 25). Neurons 
in the driver module followed this same pattern 
suggesting this module is more likely to be involved in 
feedforward processing (25, 26).  

 To explore signal transmission between modules, we 
examined the subnetworks defined by the connections 
from driver to driven neurons (Fig. 3A top) and from 
driven to driver neurons (Fig. 3A bottom). These 
subnetworks showed clear separation across the 
cortical depth as is evident by plotting the overlay of the 
two subnetworks for each source area (Fig.   S7), 
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Figure 2. Network convergence/divergence and spatial distribution of neuronal modules. A) Boxplot of divergence degree 
distribution across areas for driver and driven modules. Divergence degree of driver module decreased along the visual hierarchy 
(Spearman’s r = -0.83, p = 0.04). B) Convergence degree distribution for driver and driven modules. Convergence degree of 
driven module was not correlated with hierarchy level (Spearman’s r = -0.03, p = 0.96). C) Left: Layout of visual cortical areas. 
Right: Proportion of neurons in driver and driven modules across the visual cortical hierarchy. D) Cortical layer bias of the driver 
and driven neural modules for all mice. Error bars in C) and D) represent bootstrapped standard error. 

consistent with the laminar dependency in Fig 2D. 
Moreover, the subnetwork connections between 
modules were largely unidirectional; that is, the driver 
neurons from each source area (including top areas of 
the visual hierarchy, e.g. PM and  AM) made output 
connections to driven neurons in the network, and the 
driven neurons in each source area received input 
connections from driver neurons (Fig. 3B). The 
asymmetry of these connections suggests a directional 
signal flow from the driver to driven module. To quantify 
this, we defined a metric called the in-out index, which 
describes the relative fraction of input versus output 
connections from a source area for a given subnetwork. 
An in-out index of 1 indicates all connections are inputs 
to the source area, and an in-out index of -1 indicates 
all connections are outputs (see Methods). The in-out 
index was close to -1 for all areas of the driver-to-driven 
subnetwork (Fig. 3E, top), indicating virtually all 
connections were from driver neurons in the source 
area to driven neurons in other areas. In contrast, the 

in-out index was close to 1 in each area for the driven-
to-driver subnetwork (Fig. 3E, bottom).  

The directional communication from driver to driven 
modules suggests these two modules might be 
sequentially activated during visual stimulation. To test 
this, we quantified the stimulus response latency for 
each module and found that spiking activity in the driver 
module preceded the driven module (time to peak = 
60.5 ± 0.3 ms versus 80.0 ± 0.6 ms; Rank sum test 
statistics = -29, p = 7.1e-186) (Fig. 3F). We note that 
our jitter-corrected CCG method removes stimulus-
locked correlations from the functional correlations, and 
therefore, the directionality of the functional connectivity 
between the modules is not a mere reflection of the 
average response latency. Moreover, we performed 
several simulations demonstrating that a temporal 
offset between modules in the stimulus-triggered 
average response does not by necessity entail the 
existence of brief timescale correlations between 
neurons in those modules, and vice versa (Fig. S8). 
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Figure 3. Signal flow in distinct subnetworks mediating feedforward and recurrent processes. A) Directed connectivity 
matrix for between-module subnetworks (top: driver (n=74) → driven (n=81); bottom: driven → driver) of one example mouse. 
B) Graph representation of strong connections (weight value > 10-6) between source area (labeled at the top) and all other areas 
for between module subnetwork in A). Each node in the graph represents a recording site in cortex. Identity of visual areas is 
indicated by node color and arranged according to their anatomical location. Nodes in each area are arranged clockwise from 
superficial to deep layers. Line color indicates the directionality of connection (red: outputs; blue: inputs). C) Directed connectivity 
matrix for within-module subnetworks (top: driver → driver; bottom: driven → driven). D) Graph representation of within module 
subnetworks. E) In-out index averaged across mice (n=19 mice) for between-module subnetworks. F) Population average of 
normalized PSTH for two modules. G) In-out index for within-module subnetworks. H) Response latency (time-to-first spike) for 
different modules across areas (n = 19 mice). I) Diagram of the three temporal stages of information flow revealed by data. 
Intensity of color indicates activation level (darker is stronger). Error bar in this figure represents s.e.m. 
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Figure 4. Population temporal structure in different neuronal modules. A) Raster plots for the driver module and driven 
module of a single trial from an example mouse. Each row is the spike times of one neuron. Red cross highlights the first 
stimulus-evoked spike. B) First spike latency distribution of each module from the trial shown in A). The spread quantifies module 
onset-latency synchronization in response to stimulus onset. C) Joint plot of module onset-latency spread comparing driver and 
driven module across trials (n = 8480 trials from 19 mice). D) Left: normalized PSTHs of individual neurons for driver (n = 91 
neurons) and driven (n = 94 neurons) modules from an example mouse. Right: normalized population response. Driver module 
showed a first response peak at 66 ms with spread of 15.24 ms. Driven module showed a first peak at 78 ms with spread of 
24.01ms (n = 75 trials). E) Joint scatter plot of population response first peak spread across trials. F) Joint scatter plot of 
population response first peak time across trials. 

Whereas connectivity between modules was largely 
unidirectional, the functional connections within each 
module contained both input and output connections 
(Fig. 3C,D). To explore the within-module input-output 
structure, we computed the in-out index for each source 
area of the within-module subnetworks (Fig. 3G). 
Interestingly, within the driver module the in-out index 
systematically increased across the hierarchy: V1 had 
a negative in-out index and mostly made output 
connections to driver neurons in other areas; in 
contrast, driver neurons in AM received more inputs 
compared to outputs indicated by a positive in-out index 
(Fig. 3G, top; Spearman’s correlation with hierarchy is -
0.94, p = 0.0048). Connections within the driven module 
were more balanced: the in-out index was close to 0 for 
each area and did not significantly correlate with the 
hierarchy (Spearman’s correlation, p = 0.16; Fig. 3G 
bottom). These within-module patterns of connectivity 
suggest that neurons in the driver module primarily 
relay feedforward signals across areas within the 
module itself, whereas the connections within driven 
module are positioned to mediate recurrent inter-areal 
interactions. Consistent with this, in the driver module, 
visually evoked response latencies systematically 

increased with location in the anatomical hierarchy (Fig. 
3H ; correlation with mouse anatomical hierarchy score 
from (9): Spearman’s r = 0.83, p = 0.04). In contrast, 
visual latencies in the driven module were delayed 
relative to the driver module, and did not show an 
organized progression across the hierarchy 
(Spearman’s r = 0.14, p = 0.79). Together, these results 
suggest a working model in which these separate 
neuronal modules serve as subsequent stages of signal 
propagation during visual processing: one module 
transmits feedforward signals about external stimuli 
along the hierarchy; the other integrates and processes 
recurrent signals given inputs from the driver module 
(Fig. 3I). 

Modeling studies of feedforward networks have 
investigated how spiking signals are propagated across 
modules of sequential processing (7, 27, 28). 
Depending on network connections and synaptic 
weights, successive stages can propagate 
synchronous activity (e.g. a synfire chain) or 
asynchronous fluctuations in firing rate (rate-coded 
signals). In vitro experiments with cultured networks 
reported decreased within-module synchrony of spiking 
activity as signals were relayed across sequential 
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processing modules (29). However, evidence from 
networks in vivo in an awake animal is rare (30). The 
distributed functional modules we describe here could 
represent sequential stages of signal processing 
beyond specific anatomically defined areas. In this 
context, we compared onset-latency synchrony of the 
first stimulus-evoked spike on a trial-by-trial basis for 
the driver and driven modules (Fig. 4A-C). Neurons in 
the driver module were more tightly synchronized 
compared to those in the driven module (Fig. 4C driver 
15.1 ± 4.2 ms and driven 16.4 ± 4.0 ms, n = 8480 trials, 
Student’s t-test statistics T = -20.2, p = 2.6e-89). In 
addition, the spread of the first peak (pulse packet (7)) 
of the population response within driver module for each 
trial (Fig. 4D-F) was also more compact (Fig. 4E 
Student’s t-test statistics T = -31.4, p = 3.3e-211, n = 
8480 trials across 19 mice), with significantly earlier 
peak response (Fig. 4F T = -17.4, p = 1.4e-67). These 
results show that the transmission between the driver 
and driven module is associated with increased 
temporal spread of within-module spiking and 
decreased population onset synchronization. This is 
consistent with the concept of increasing recurrent 
interactions deeper into the processing chain (31, 32). 

Our results provide a multi-area, cellular scale 
description of functional connectivity in the mouse 
visual cortex and suggest a novel perspective of 
module-based signal transmission within this 
hierarchical recurrent neural network. Community 
detection methods have been used in human brain 
imaging studies to identify functional modules at the 
millimeter scale (15, 33) with distributed organization 
(34). At the cellular-scale, the network structure we 
describe has a similar organizing principle: functional 
modules are spatially distributed across multiple cortical 
regions. Contrary to a simple feedforward model in 
which each cortical hierarchical level sequentially 
transmits signals up the chain of areas, we provide 
evidence for distributed functional modules that each 
included neurons from multiple hierarchical levels. 
These multi-area modules could correspond to core 
processing stages in the cortical network, and 
separately mediate feedforward and recurrent 
processes. Conceptually, our observations are in 
agreement with the counterstream theory (25, 35), 
which suggests compartmentalization of FF and FB 
pathways, possibly by layer in each area. Whether 
similar functional modules exist in other cortical regions 
and species including primates requires further 
investigation. Unlike anatomical connectivity, functional 
connectivity is a dynamic entity that can be restructured 
by external stimuli, behavioral state, and top-down input 
according to computational demands (15). Future work 
can use module-specific perturbations to relate 

functional module dynamics to specific behavioral and 
cognitive operations.   
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Supplementary Materials 

Materials and Methods 
Mice 
Mice were maintained in the Allen Institute animal facility and used in accordance with protocols approved 
by the Allen Institute’s Institutional Animal Care and Use Committee. Four mouse genotypes were used: 
wild-type C57BL/6J (Jackson Laboratories) (n = 11) or Pvalb-IRES-Cre (n = 1), Vip-IRES-Cre (n = 2), 
and Sst-IRES-Cre (n = 5) mice bred in-house and crossed with an Ai32 channelrhodopsin reporter line. 
Following surgery, all mice were single-housed and maintained on a reverse 12-hour light cycle. All 
experiments were performed during the dark cycle.  

 
Data collection 
Experimental data collection followed the procedures described in Siegle, Jia et al., 2019 (14). A summary 
of these methods is provided below. 13 out of 19 of datasets in this study were previously released on 
the Allen Institute website via the AllenSDK (https://github.com/AllenInstitute/AllenSDK).   

 
Surgical methods 
All surgical methods used here are the same as (14). Briefly, to enable co-registration across the surgical, 
intrinsic signal imaging, and electrophysiology rigs, each animal was implanted with a titanium headframe 
that provides access to the brain via a cranial window and permits head fixation in a reproducible 
configuration. To implant the headframe, mice were initially anesthetized with 5% isoflurane (1-3 min) 
and placed in a stereotaxic frame (Model# 1900, Kopf). Isoflurane levels were maintained at 1.5-2.5% for 
surgery and body temperature was maintained at 37.5°C. Carprofen was administered for pain 
management (5-10 mg/kg, S.C.). Atropine was administered to suppress bronchial secretions and 
regulate heart rhythm (0.02-0.05 mg/kg, S.C.). The headframe was placed on the skull and fixed in place 
with White C&B Metabond (Parkell). Once the Metabond was dry, the mouse was placed in a custom 
clamp to position the skull at a rotated angle of 20º, to facilitate the creation of the craniotomy over visual 
cortex. A circular piece of skull 5 mm in diameter was removed, and a durotomy was performed. The 
brain was covered by a 5 mm diameter circular glass coverslip, with a 1 mm lip extending over the intact 
skull. The bottom of the coverslip was coated with a layer of silicone to reduce adhesion to the brain 
surface. At the end of the procedure, but prior to recovery from anesthesia, the mouse was transferred 
to a photo-documentation station to capture a spatially registered image of the cranial window. 

 
On the day of recording (at least four weeks after the initial surgery), the cranial coverslip was removed 
and replaced with an insertion window containing holes aligned to six cortical visual areas. First, the 
mouse was anesthetized with isoflurane (3%–5% induction and 1.5% maintenance, 100% O2) and eyes 
were protected with ocular lubricant (I Drop, VetPLUS). Body temperature was maintained at 37.5°C (TC-
1000 temperature controller, CWE, Incorporated). The cranial window was gently removed to expose the 
brain. An insertion window with holes for probe penetration based on each mouse’s individual visual area 
map was then placed in the headframe well and sealed with Metabond. An agarose mixture was injected 
underneath the window and allowed to solidify. The mixture consisted of 0.4 g high EEO Agarose (Sigma-
Aldrich), 0.42 g Certified Low-Melt Agarose (Bio Rad), and 20.5 mL ACSF (135.0 mM NaCl, 5.4 mM KCl, 
1.0 mM MgCl2, 1.8 mM CaCl2, 5.0 mM HEPES). This mixture was optimized to be firm enough 
to stabilize the brain with minimal probe drift, but pliable enough to allow the probes to pass through 
without bending. A layer of silicone oil (30,000 cSt, Aldrich) was added over the holes in the insertion 
window to prevent the agarose from drying. A 3D-printed plastic cap was screwed into the headframe 
well to keep out cage debris. At the end of this procedure, mice were returned to their home cages for 1-
2 hours prior to the Neuropixels recording session. 
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Intrinsic Signal Imaging 
Intrinsic signal imaging was performed approximately 15 days after the initial surgery and 25 days before 
the experiment. Intrinsic signal imaging was used to obtain retinotopic maps representing the spatial 
relationship of the visual field (or, in this case, coordinate position on the stimulus monitor) to locations 
within each cortical area (Fig. 1A). The maps made it possible to delineate functionally defined visual 
area boundaries in order to target Neuropixels probes to retinotopically defined locations in primary and 
higher order visual cortical areas (16). 

 
Habituation 
Mice underwent two weeks of habituation in sound-attenuated training boxes containing a headframe 
holder, running wheel, and stimulus monitor. Each mouse was trained by the same operator throughout 
the 2-week period. During the first week, the operator gently handled the mice, introduced them to the 
running wheel, and head-fixed them with progressively longer durations each day. During the second 
week, mice run freely on the wheel and were exposed to visual stimuli for 10 to 50 min per day. The 
following week, mice underwent habituation sessions of 75 minutes and 100 minutes on the recording 
rig, in which they viewed a truncated version of the same stimulus shown during the experiment. 

 
Electrophysiology Experiments 
All neural recordings were carried out with Neuropixels probes (36). Each probe contains 960 recording 
sites, a subset of these (374 for “Neuropixels 3a” or 383 for “Neuropixels 1.0”) can be configured for 
recording at any given time. The electrodes closest to the tip were always used, providing a maximum of 
3.84 mm of tissue coverage. The sites are oriented in a checkerboard pattern on a 70 μm wide x 10 mm 
long shank. The signals from each recording site are split in hardware into a spike band (30 kHz sampling 
rate, 500 Hz highpass filter) and an LFP band (2.5 kHz sampling rate, 1000 Hz lowpass filter). 

 
The experimental rig was designed to allow six Neuropixels probes to penetrate the brain approximately 
perpendicular to the surface of visual cortex (14). Each probe was mounted on a 3-axis micromanipulator 
(New Scale Technologies, Victor, NY), which were in turn mounted on a solid aluminum plate, known as 
the probe cartridge. The mouse was placed on the running wheel and fixed to the headframe clamp. The 
tip of each probe was aligned to target the desired retinotopic region in each area. Brightfield photo-
documentation images were taken with the probes fully retracted, after the probes reached the brain 
surface, and again after the probes were fully inserted. An IR dichroic mirror was placed in front of the 
right eye to allow an eyetracking camera to operate without interference from the visual stimulus. A black 
curtain was then lowered over the front of the rig, placing the mice in complete darkness except for the 
visual stimulus monitor.  

 
Neuropixels data was acquired at 30 kHz (spike band) and 2.5 kHz (LFP band) using the Open Ephys 
GUI (37). Gain settings of 500x and 250x were used for the spike band and LFP band, respectively. Each 
probe was either connected to a dedicated FPGA streaming data over Ethernet (Neuropixels 3a) or a 
PXIe card inside a National Instruments chassis (Neuropixels 1.0). Raw neural data was streamed to a 
compressed format for archiving which was extracted prior to analysis. 

 
Cortical Area Targeting 
To confirm the identity of the cortical visual areas, images of the probes taken during the experiment 
were compared to images of the brain surface vasculature taken during the ISI session (see above). 
Vasculature patterns were used to overlay the visual area map on an image of the brain surface with the 
probes inserted (Fig 1A). To maximize measurable functional connectivity across areas, we targeted the 
center of gaze in all areas (except for RL, which targeted the center of mass because of geometry) with 
overlapping receptive fields (RF) guided by a retinotopic map. Targeting was validated by mapping 
receptive fields of all sorted units with small Gabor patches presented at different locations on the screen 
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(see below). All analysis was restricted to neurons with well-defined receptive fields within the screen 
boundaries. 

 
Visual Stimulus 
Visual stimuli were generated using custom scripts based on PsychoPy (38) and were displayed using 
an ASUS PA248Q LCD monitor, with 1920 x 1200 pixels (21.93 in wide, 60 Hz refresh rate). Stimuli were 
presented monocularly, and the monitor was positioned 15 cm from the mouse’s right eye and spanned 
120° x 95° of visual space prior to stimulus warping. Each monitor was gamma corrected and had a mean 
luminance of 50 cd/𝑚!. To account for the close viewing angle of the mouse, a spherical warping was 
applied to all stimuli to ensure that the apparent size, speed, and spatial frequency were constant across 
the monitor as seen from the mouse’s perspective. 

 
Visual stimuli for receptive fields (RFs): Receptive field location was mapped with small Gabor patches. 
The receptive field mapping stimulus consisting of 2 Hz, 0.04 cycles per degree drifting gratings (3 
directions: 0º, 45º, 90º) with a 20º circular mask. These Gabor patches randomly appeared at one of 81 
locations on the screen (9 x 9 grid with 10º spacing) for 250 ms at a time, with no blank interval.  

 
Visual stimuli for current source density (CSD): Current source density for layer estimation used the full-
field flash stimuli (a series of dark or light full field image with luminance = 100 cd/𝑚!). lasting 250 ms 
each and separated by a 1.75 second inter-trial interval.  

 
Visual stimuli for functional connectivity: Functional connectivity during the stimulus-driven condition was 
measured using drifting grating stimuli, which were presented at 4 directions (0º, 45º, 90º, 135º), with 
temporal frequency equal to 2 cycle/sec and contrast equal to 0.8. In each trial, the grating is presented 
for 2 sec followed by 1 sec gray screen. Each condition was presented for 75-100 trials.  

 
Spike Sorting  
Prior to spike sorting, the spike-band data passed through 4 steps: DC offset removal, median 
subtraction, filtering, and whitening. First, the median value of each channel was subtracted to center the 
signals around zero. Next, the median across channels was subtracted to remove common-mode noise. 
The median-subtracted data file is the input to the Kilosort2 Matlab package 
(https://github.com/mouseland/kilosort2), which applies a 150 Hz high-pass filter, followed by whitening 
in blocks of 32 channels. The filtered, whitened data is saved to a separate file for the spike sorting step. 

 
Kilosort2 was used to identify spike times and assign spikes to individual units (39). Kilosort2 attempts to 
model the complete dataset as a sum of spike "templates." The shape and locations of each template is 
iteratively refined until the data can be accurately reconstructed from a set of N templates at M spike 
times, with each individual template scaled by an amplitude, a. A critical feature of Kilosort2 is that it 
allows templates to change their shape over time, to account for the motion of neurons relative to the 
probe over the course of the experiment. Stabilizing the brain using an agarose-filled plastic window has 
virtually eliminated probe motion associated with animal running, but slow drift of the probe over ~3-hour 
experiments is still observed. Kilosort2 is able to accurately track units as they move along the probe 
axis, eliminating the need for the manual merging step that was required with the original version of 
Kilosort (40). The spike-sorting step runs in approximately real time (~3 hours per session) using a dual-
processor Intel 4-core, 2.6 GHz workstation with an NVIDIA GTX 1070 GPU. We used the default 
parameters in Kilosort2, with an initial threshold of 12, and a final-pass threshold of 8. 

 
The Kilosort2 algorithm will occasionally fit a template to the residual left behind after another template 
has been subtracted from the original data, resulting in double-counted spikes. This can create the 
appearance of an artificially high number of ISI violations for one unit or artificially high zero-time-lag 
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synchrony between nearby units. To eliminate the possibility that this artificial synchrony will contaminate 
data analysis, the outputs of Kilosort2 are post-processed to remove spikes with peak times within 5 
samples (0.16 ms) and peak waveforms within 5 channels (~50 microns). 

 
Kilosort2 generates templates of a fixed length (2 ms) that matches the time course of an extracellularly 
detected spike waveform. However, there are no constraints on template shape, which means that the 
algorithm often fits templates to voltage fluctuations with characteristics that could not physically result 
from the current flow associated with an action potential. The units associated with these templates are 
considered “noise,” and are automatically filtered out based on 3 criteria: spread (single channel, or >25 
channels), shape (no peak and trough, based on wavelet decomposition), or multiple spatial peaks 
(waveforms are non-localized along the probe axis). 

 
Following the spike sorting step, data for each session was uploaded to the Allen Institute Laboratory 
Information Management System (LIMS). Each dataset was run through the same series of processing 
steps using a set of project-specific workflows (AllenSDK v1.0.2) in order to generate 
NeurodataWithoutBorders (NWB) files used for further analysis. 

 
Analysis Methods 

 
Dataset 
In total, units from 19 mice were included in our functional connectivity analysis. Spike sorting, quality 
control, and preprocessing steps followed the same procedures as (14). 13 out of 19 of these datasets 
were previously released on the Allen Institute website via the AllenSDK 
(https://github.com/AllenInstitute/AllenSDK). On average, 632 ± 18 sorted cortical units were 
simultaneously recorded in each mouse. We set a firing rate threshold to select units for functional 
connectivity analysis. Firing rate (FR) was defined as the average number of spikes in a window from 50 
ms to 500 ms after the onset of the drifting gratings stimulus (Fig. S1). Only units with mean FR > 2 
spikes/second were used for pairwise cross-correlogram (CCG) calculation, which resulted in an average 
of 356 ± 7 units in each mouse (n = 6773 units in total). Because functional connectivity varies with 
receptive field position (41), we further constrained the dataset to include units with receptive field centers 
at least 10 degree away from the edge of the monitor (see Visual receptive fields section below; Fig. S1). 
After filtering by receptive field location, we ended up with 184 ± 8 per mouse used for the final clustering 
procedure (n = 3487 units in total). After applying clustering on the functional connectivity matrix 
constrained by both FR and RF location in each mouse, the total numbers of units belonging to each 
cluster were: n_cluster1 = 1386, n_cluster2 = 1131, n_cluster3 = 970. 

 
Quantification and statistical analysis 
All analyses were performed in Python. The main analysis packages used in this paper are Scipy (42), 
scikit-learn (20), statsmodels (43), and network (44). Error bars, unless otherwise specified, were 
computed as standard error of the mean. When comparing the difference between two independent 
variables, if their distribution is Gaussian like (normality test), we used Student’s t-test; if their distribution 
is non-Gaussian, we used a rank sum test. When testing whether a distribution is significantly different 
from 0, we used a one-sample t-test. When comparing variables between modules across cortical areas, 
we used two-way analysis of variance (ANOVA) to assess both the main effect between modules and 
whether there is any interaction across areas. When comparing similarity to the previously established 
anatomical visual hierarchy in mouse (9), we calculated the correlation between our measured variable 
(e.g. first spike latency) and the previously calculated hierarchy score (V1: -0.50, RL: -0.12, LM: -0.13, 
AL: 0.00, PM: 0.11, AM: 0.29), using Spearman’s correlation to estimate the rank order significance. 
Statistical details and p-values can be found in the Results section or figure legends. 
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Visual receptive fields 
Receptive fields were mapped with Gabor patches (20 degree each; 3 different orientations (0, 45, 90), 
temporal frequency = 2 cyc/s, spatial frequency = 0.04 cyc/deg) shown randomly at 81 different locations 
(9 x 9 grid, 10º separation between pixel centers) with gray background on a 120° x 95°  monitor (1920 
x 1200 pixels, 21.93 inches wide, 60 Hz refresh rate). The receptive field map (RF) for one unit is defined 
as the mean 2D histogram of spike counts at each of 81 locations (Fig. S1A), each pixel covers a 10° x 
10° square. The receptive field was then thresholded at 20% of maximum response (Fig. S1B) to remove 
potential noisy pixels. Then, a 2D Gaussian  
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was fit to the thresholded visual receptive map to estimate the center of the receptive field location (Fig. 
S1C).  

 
Peristimulus time histogram (PSTH) 
To visualize the temporal dynamics of a neuronal population (Fig. 1, Fig. 3, and Fig. 4), the activity of 
each neuron was binned at 1 ms, averaged across trials (n = 75), smoothed with a Gaussian filter with 
standard deviation of 3 ms, baseline subtracted (baseline period from 0 to 0.03s relative to stimulus 
onset), and normalized by dividing the maximum of the response between 0 to 1.5 s after stimulus onset. 
The normalized PSTHs of individual neuron were averaged within a neuronal population; the error bars 
indicate standard error of the mean across neurons.  

 
Functional connectivity  
We analyzed functional interactions between pairs of simultaneously recorded neurons by calculating the 
spike train cross-correlogram (CCG) (30, 41, 45). For a pair of neurons with spike train 𝑥. and 𝑥!, the 
CCG is defined as: 

CCG(τ) =
1
M∑ ∑ x./ (t)x!/ (t + τ)0

12.
3
/2.

Θ(τ)8λ.λ!
 

where M is the number of trials, N is the number of bins in the trial, x./  and x!/  are the spike trains of the 
two units on trial i, τ is the time lag relative to reference spikes, and λ. and  λ! are the mean firing rates 
of the two units. The CCG is essentially a sliding dot product between two spike trains. θ(τ) is the 
triangular function which corrects for the overlapping time bins caused by the sliding window. To correct 
for firing rate dependency, we normalized the CCG by the geometric mean spike rate. An individually 
normalized CCG is computed separately for each drifting grating orientation and averaged across 
orientations to obtain the CCG for each pair of units.  

The jitter-corrected CCG was created by subtracting the expected value of CCGs produced from a 
resampled version of the original dataset with spike times randomly perturbed (jittered) within the jitter 
window (45, 46). The correction term (𝐶𝐶𝐺45667879) is the true expected value which reflects the average 
over all possible resamples of the original dataset. 𝐶𝐶𝐺45667879 is normalized by the geometric mean rate 
before subtracting from 𝐶𝐶𝐺:85;5<=>. The analytical formula used to create a probability distribution of 
resampled spikes was provided in Harrison and Geman, 2009. This method disrupted the temporal 
correlation within the jitter window, while maintaining the number of spikes in each jitter window and the 
shape of the PSTH averaged across trials.  

CCG?/11@A_CDAA@C1@E = CCGDA/F/GHI − CCG?/11@A@E 
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For our measurement, a 25 ms jitter window was chosen based on previous studies (30, 41). This jitter-
correction method removes both the stimulus-locked component of the response, as well as slow 
fluctuations larger than the jitter window. The remaining fast timescale correlation is more likely to be 
related to signal propagation between two neurons. Therefore, the jitter-corrected CCG reflects temporal 
correlations between a pair of neurons within the jitter-window (25ms). 
We then calculated the directed connection weight by subtracting the sum of (-13 to 0) ms of the CCG 
from the sum of (0 to 13) ms of the jitter-corrected CCG (Fig. 1D). The 13ms window was defined as half 
of the 25 ms jitter window we used, and also because real functional delay between neurons in mouse 
occur on the timescale of milliseconds to tens of milliseconds (14). The resulting value indicates the 
strength and the sign indicates the directionality of the functional connection between a pair of neurons. 
Computing this for all pairs of neurons produced a directional, cellular-resolution connectivity matrix for 
each mouse (Fig. 1E). 

 
Clustering  
Non-randomness 
We first tested whether there is modular structure (non-randomness) in the measured connectivity matrix 
by computing the graph spectrum (based on spectral graph theory (47). The eigenvalues of a graph are 
defined as the eigenvalues of its adjacency matrix (21). The set of eigenvalues of a graph forms a graph 
spectrum. The randomness of the matrix is quantified by comparing the graph spectrum of the original 
connectivity matrix with its shuffled connectivity matrix, where the x and y axis are shuffled independently, 
and a randomly generated connectivity matrix with the same size. We found that the graph spectrum of 
the original matrix showed significantly higher explained variance by the top eigenvalues than the shuffled 
matrix and the random matrix, suggesting that the measured connectivity matrix has non-random 
structure (Fig. S2).  

 
Defining the number of clusters 
The number of clusters was determined using several complementary methods (Fig. S4A): 

1. The Elbow method estimates the percentage of variance explained for a given number of . 
The number of cluster  is estimated at the point when the curve turns into a plateau. The 
following measure represents the sum of within-cluster distances (pairwise distances) between 
all points in a given cluster  containing  points: 

 

Adding the normalized within-cluster sum-of-squares gives a measure of the compactness of our 
clustering, or the pooled within-cluster sum of squares around the cluster means: 

  

 increases monotonically with number of clusters . The number of clusters is chosen at the 
point where the marginal gain drops (or the point slope change most dramatically), the ‘elbow’.  

 
2. Gap statistics (48) seeks to standardize the comparison of  with a null reference 

distribution of the data, i.e. a distribution with no obvious clustering. The estimate for the optimal 
number of clusters  is the value for which  falls the farthest below this reference curve. 
This information is contained in the following formula for the gap statistic: 

 , 
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Where  denotes the expectation under a sample of size n from the reference distribution. 

The estimate will be the value maximizing  after we take the sampling distribution 
into account.  

 
3. Clustering density estimates the data distribution density for a given  by calculating a density 

function  (49). The value of  is the ratio of the real distortion to the estimated 
distortion. When the data are uniformly distributed, the value of is 1. When there are areas 
of concentration in the data distribution, the value of decreases. Therefore, the number of 

 clusters is determined by finding the minimum value of .  
Combining the estimation of  using the above three methods, we determined the optimal number of 
clusters to be 3. 

 
Method for clustering 
In order to find neurons that have correlated connectivity patterns to the rest of the network, we clustered 
the directed connectivity matrix by treating the connectivity pattern from each source neuron to all target 
neurons as features (Fig. 1F and Fig. S3). To reduce noise, we projected the connectivity features into a 
lower dimensional space with principal component analysis (PCA), only keeping the top principal 
components that explained 80% of total variance. We then applied a consensus clustering method (50) 
with k-means to obtain robust clusters that are not biased by random initial conditions. First, we 
constructed a co-clustering association matrix by running k-means with different initial conditions 100 
times (reached stable co-clustering). Each entry in the matrix represents the probability of two units 
belonging to the same cluster. Then, we clustered the association matrix with hierarchical clustering to 
determine the cluster labels. The number of clusters was determined using methods described in the 
previous section. 

 
Comparing different clustering methods  
Our consensus clustering was based on k-means clustering methods, which measures the compactness 
of points based on features in the reduced PCA space (see above). We compared this clustering method 
with two other clustering methods to detect modular structure in the adjacency matrix: the spectral 
clustering method (sklearn.cluster.SpectralClustering) and bi-clustering method 
(sklearn.cluster.SpectralBiclustering).  

 
Spectral clustering determines the clusters based on the connectivity of data points: points that are 
connected or immediately next to each other are placed in the same cluster. In spectral clustering, the 
data points are treated as nodes of a graph, and the clustering is treated as a graph partitioning problem. 
The nodes are then mapped to a low-dimensional space that can be easily segregated to form clusters. 
The spectral clustering is carried out in 3 steps: 1. Compute a similarity graph (k-nearest neighbors). 2. 
Project the data onto a low-dimensional space (compute Graph Laplacian, and eigenvalues and 
eigenvector for L). 3. Create clusters (based on the eigenvector corresponding to the 2nd eigenvalue to 
assign values to each node, then split the nodes with k-means for the given number of clusters).  

 
Biclustering (or block clustering) is a method to simultaneously cluster the rows and columns of a matrix. 
For a m (sample) by n (feature) matrix, the algorithm generates biclusters, which are a subset of rows 
that exhibit similar connectivity pattern across a subset of columns.  

 
The results of consensus clustering, spectral clustering, and biclustering of the functional connectivity 
matrix are shown in (Fig. S4C). The three methods showed relatively consistent clustering results (Fig. 
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S4D) in detecting units that belong to the three clusters dominated by different weight pattern. Therefore, 
our clustering findings are general and do not depend on the specific clustering method we used.  

 
Cluster quality 
We used two methods, which were previously used to evaluate spike sorting cluster quality (14), to 
quantify neuronal population cluster quality given different number of clusters (Fig. S4B). The d-prime 
(d’) was calculated using Fisher’s linear discriminant analysis to find the line of maximum separation in 
PC space (51). d′ indicates the unbiased separability of the cluster of interest from all other clusters. The 
higher the value, the more distinguishable are the clusters. Hit-rate was calculated with nearest-neighbors 
method (n_neighbors = 3), which is a non-parametric estimate of exemplar contamination in each cluster. 
For each unit belonging to the cluster of interest, the three nearest units in principal-component space 
are identified. The “hit rate” is defined as the fraction of these units that belong to the cluster of interest. 
This metric is based on the “isolation” metric from (52). The higher the value, the less contamination in 
each cluster.  

 
Module distribution 
The area distribution of neurons within each module was quantified by calculating the proportional 
number of units in one area relative to the total number of units in all areas for a given module. The 
proportion of one module across areas sums to 1. To minimize sampling bias across areas, we 
subsampled units in each area to match the number of units across areas. The final result was a 
bootstrapped mean (sampling with replacement to match the number of units in each area; n_boot = 
100). Error bars represents the bootstrapped standard deviation across all units in all mice. Results are 
only shown for the ‘driver’ and ‘driven’ modules. No systematic area bias was observed for cluster 1 (the 
cluster with non-significant connection) units (result not shown). 

 
The distribution of each neuronal module across layers was quantified by first dividing units into 
superficial, middle, and deep layers according to the location of layer 4 estimated from the CSD (Fig. S6). 
We then calculating the proportion of units across these three layers for a given neuronal module. To 
minimize sampling bias across layers, we subsampled units in each layer to match the number of units 
across layers. Means and error bars were calculated using the same bootstrapping method as for the 
area distributions. 

 
Graph creation 
To create graphs visualizations (Fig. 3B,D), we first condensed our single-unit connectivity matrix to a 
single-recording-site connectivity matrix by combining units with peak channels on the same electrode. 
Then, we treat each site as a node in the graph. For an intuitive representation, nodes belonging to the 
same cortical area are close by and arranged clockwise from superficial to deep layer. The location of 
each area is determined by the top-down view of the physical locations of visual areas on the left 
hemisphere (Fig. 1A). The edges of the graph represent connections between sites, with red lines 
indicating projections from the source unit (positive weight) and blue lines indicating projections back to 
the source unit (negative weight). The threshold for significant connections is defined as an absolute 
weight larger than 10-6 coincidences/spike, which is half of the standard deviation of the weight 
distribution across all mice. 

 
Divergence and convergence degree 
Divergence degree is similar in concept to the outdegree of a graph. It is defined as the proportion of 
significant positive connections (weight > 10-6) from a source neuron to the rest of the network (
neurons). represents the number of positive connections from neuron  to the network.  

N
Ci,+ i
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Convergence degree is similar in concept to the indegree of a graph. It is defined as the proportion of 
significant negative connections (weight < -10-6) to source neuron  from the rest of the network. 

  

 
Temporal dynamics analysis 
Response latency 
Two different measurements were used to estimate response latency. The peak response latency was 
defined as the time when a neuron’s response reached its first peak after stimulus onset. The time to first 
spike was estimated in each trial by looking for the time of the first spike 30 ms after stimulus onset. If no 
spike was detected within 250 ms after stimulus onset, that trial was not included. The overall latency for 
each unit was defined as the mean time to first spike across trials. 

 
Population onset response synchrony 
We used the spread of time-to-first spike for all neurons within a module for a single trial as an indicator 
of population response onset synchronization. The spread was calculated by fitting a Gaussian to each 
trial’s time-to-first-spike distribution:  

 , 

where x is the spike time relative to stimulus onset, µ is an estimate of the average time-to-first-spike and 
 is an estimate of the spread of the time-to-first spike distribution for one trial.  

 
Population response spread of the first peak 
To quantify spike the response spread of a neuronal ensemble, we estimated the width of the population 
PSTH for each trial. The PSTH was calculated with 2 ms bins, and convolved with a Gaussian kernel of 
width 5 ms. The properties of the first peak were estimated using scipy.signal.find_peaks. The peak width 
represents the half-width at half maximum of the peak, while peak height represents the maximum of the 
peak. The spike spread of a neuronal population is an important parameter for quantifying how signals 
are transmitted through a feedforward network. 

 
In-out index 
To quantify the proportion of projections out from a source area relative to inputs back into the source 
area, we defined the in-out index as  

	𝑖𝑛𝑑𝑒𝑥 =
𝐶5< − 𝐶:J6
𝐶5< + 𝐶:J6

 

where is the number of connections from source to other areas in the given network and is the 
number of connections from other areas to source area. This index reflects the asymmetry of in-and-out 
degree of a source area.  When the value is close to -1, the source area is dominated by outward 
projections (positive weights). When the value is close to 1, the source area is dominated by inward 
projections (negative weights). When the value is 0, the source area has balanced outward and inward 
connections. 

 
Layer definition 
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We estimated the depth of the middle layer of cortex by first calculating the current source density (CSD) 
using simultaneously recorded local field potentials (LFP) (Fig. S6). The CSD was computed using the 
method in (53), using the LFP within 250 ms after stimulus onset. First, we calculated the average evoked 
(stimulus locked) local field potential at each recording site. Next, we duplicated the uppermost and 
lowermost field traces and smoothed these signals across sites 

 

where is the field potentials, is the coordinate perpendicular to the layers,  is the spatial sampling 
interval (40 μm in our case). Then, we calculated the second spatial derivative 

 . 

In the resulting CSD map, current sinks are indicated by downward deflections and sources by upward 
deflections. To facilitate visualization, we smoothed the CSD with 2D Gaussian kernels (𝜎" = 1;	𝜎" = 2). 
To find the middle layer, we defined the first sink within 100 ms after stimulus onset as the input layer 
(center channel) by searching for the local maximum on the CSD map (first sink), followed by source.  

 
We used the middle layer estimation for two metrics in our paper. For the calculation of layer distribution 
bias of ‘driver’ and ‘driven’ modules, we partitioned the cortical layers into three layers: middle layer 
(center channel ±	8 channels, which is ± 40µm), superficial layer (channels above middle layer), and 
deep layers (channels below middle layer and above white matter). For the layer dependence of PSTH 
response latency (Fig. S6), we set the middle layer to depth = 0 and defined depths around the middle 
layer with 8-channel spacing (40µm	spacing). Units within a depth range were grouped together to 
calculate a PSTH and the latency for that depth was estimated based on this grouped PSTH. 

 
Simulations to test mathematical relationship between PSTH shape and CCG sharp peak 
Because we observed that the functional connectivity defined ‘driver’ module responded earlier than the 
‘driven’ module (Fig. 3D), we wondered whether the brief timescale relationship of ‘driver’ leading ‘driven’ 
was a consequence of the general latency reflected in averaged PSTH. Even though our jitter-correction 
method should have removed stimulus-locked components and the observed directionality should only 
reflect brief-timescale signal transmission, we still wanted to rule out the possibility that the observed 
asymmetry in the CCG is merely a reflection of the trial-averaged PSTH latency.  

We used a simple simulation to carry out positive and negative controls (Fig. S7). The negative control 
tested whether two neurons with correlated, but temporally offset, PSTH traces will necessarily show 
significant peaks in their jitter-corrected CCG (25 ms jitter window). The positive control tested whether 
two neurons with uncorrelated PSTH traces can produce a significant peak in their CCG if we artificially 
introduce millisecond-timescale correlations. The mathematical expression of the tests is formulated as 
follows: 

Given two PSTH traces: 𝜆.(𝑡) and 𝜆!(𝑡), we simulated Poisson spike trains: 
𝑥.(𝑡)~𝑃𝑜𝑖𝑠T𝜆.(𝑡)U 

𝑥!(𝑡)~𝑃𝑜𝑖𝑠T𝜆!(𝑡)U, 

over time 𝑇 for 100 repeats, where the PSTHs of the two simulated spike trains (𝑋. and 𝑋!) matched 
the shape of 𝜆.(𝑡) and 𝜆!(𝑡). Synchronized spikes were introduced to 𝑥.(𝑡) and 𝑥!(𝑡) only for the 
positive control. CCGs before and after jitter correction were calculated between 𝑋. and 𝑋!. We found 
that brief timescale correlations between two neurons (identified by significant peaks in the CCG) do 

ϕ r( ) = 14 ϕ r + h( )+ 2ϕ r( )+ϕ r − h( )( )
ϕ r h

D = 1
h2

ϕ r + h( )− 2ϕ r( )+ϕ r − h( )( )
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not depend on the shape and relative timing of their PSTHs, but—as expected—reflect only their fine-
timescale temporal relationship.  

 
Data and code availability: 
The majority of the data in this study (13 of 19 experiments) was publicly released as an open dataset 
on the Allen Institute website in October 2019, and is available via the AllenSDK 
(https://allensdk.readthedocs.io/en/latest/visual_coding_neuropixels.html). Additional data and software 
will be deposited to Github.  
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Supplemental Figure 1 Receptive field mapping and unit selection. A) Receptive fields were mapped with 
Gabor patches (20 degree each; 3 different directions (0º, 45º, 90º), temporal frequency = 2 cyc/sec, spatial 
frequency = 0.04 cyc/deg) shown randomly at 81 different locations (9 x 9 grid, 10º separation between location 
centers). The receptive field map for one unit is defined as the mean 2D histogram of spike counts at each of 81 
locations. B) A threshold (20% of maximum) was applied to the response map to remove potential noisy pixels. C) 
A 2D Gaussian was fit to the filtered visual receptive map to estimate center of the receptive field location. D) Center 
of RFs from all units recorded in 19 mice with mean firing rate larger than 2 Hz. Different colors corresponds to 
different cortical areas. The gray box highlights the units with receptive field center on screen and at least 10 
degrees away from the edge of the monitor, which was included for functional connectivity analysis. E) An example 
averaged PSTH in response to 2 second drifting grating stimuli (stimulus presentation duration is highlighted by 
gray bar). Averaged stimulus evoked firing rate (FR) was calculated between 50ms to 500ms after stimulus onset 
(high-lighted with pink) and averaged across orientations and trials for each units. F) Number of units in each visual 
cortical area that pass selection criteria. To have enough spikes for CCG calculation, we sub-selected units with 
FR > 2 spikes/sec. To maximize overlapped receptive fields and reduce edge effects, we further selected units with 
RF centers at least 10 degree away from the screen edge (see D). In total we recorded 12017 units in cortex across 
19 mice. 56.4% remained after FR filter and 29.0% remained after filtering for both FR and receptive field center. 
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Supplemental Figure 2 Non-randomness of the functional connectivity matrix. A) Functional connectivity 
matrix from one example experiment (units are sorted by depth and areas). The shuffled matrix control was 
generated by randomly shuffling the x and y axes of the original matrix. The random matrix control was generated 
by simulating pure random connections between units. B) Eigenvalues of the three matrices in A). C) Explained 
variance based on eigenvalues in B). The original connectivity matrix showed the highest explained variance with 
relative few dimensions suggesting the presence of organized structure in the matrix compared to the shuffled 
and random controls. D) Quantification of explained variance for the measured and control connectivity matrices 
across mice (n=19 mice). Error bars indicate standard error of the mean.  
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Supplemental Figure 3 Illustration of clustering method for identifying neuronal modules. Treating the 
connectivity pattern from each unit to the network as features, we first applied principle component analysis to 
reduce noise in the original connectivity matrix by keeping the top principle components that explain 80% of the 
total variance. Then we applied consensus clustering (50) to the PCs, by running K-means using the PCs 100 
times until reaching a stable co-clustering association matrix, where each entry represents the probability of two 
units belonging to the same cluster. Finally, we applied hierarchical clustering to the association matrix and kept 3 
clusters as the classification result, which was independently validated using the methods in Fig. S4A. As a result, 
the units are clustered based on their connectivity pattern into three modules. The bottom UMAP (54) is a 
visualization of 2D embedding with all the PCs and the layout agrees with the cluster labels from the consensus 
clustering result.  
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Supplemental Figure 4 Number of clusters, cluster quality, and comparison of clustering methods. A) 
Number of clusters estimated with three different methods (Elbow method; cluster density function; Gap statistics; 
see Methods for details). Errorbars indicate standard error across mice (n=19). B) Quantification of cluster quality 
as the number of clusters and estimation kernels. The d-prime (d’) was calculated using Fisher’s linear discriminant 
analysis to find the line of maximum separation in PC space. The higher the value, the more distinguishable the 
clusters are. Hit-rate was calculated nearest-neighbors method (n_neighbors=3), which is a non-parametric 
estimate of exemplar contamination in each cluster. For each unit belonging to the cluster of interest, the three 
nearest units in principal-component space are identified. The “hit rate” is defined as the fraction of these units that 
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belong to the cluster of interest. This metric is based on the “isolation” metric from (51). The higher the value, the 
less contamination in each cluster. Error bars indicate standard error across mice (n=19). C) Original functional 
connectivity matrix and four different clustering methods: bi-clustering, spectral clustering, consensus clustering on 
original matrix, and consensus clustering after PCA (the method used in this paper). The lower plots show the 
resulting clusters from different methods. D) Venn diagram illustrating the overlapping degree of different clusters 
estimated with different methods from the example mouse in C. This result suggests that our clustering findings are 
fundamental and the clustered units are roughly similar across clustering methods.  
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Supplemental Figure 5 Clustering results from different example mice. Cluster 1 corresponds to neurons 
dominated by weak connections. Cluster 2 neurons mostly make strong positive connections with the network, 
and therefore, we refer to this set of neurons as the ‘driver’ module. Cluster 3 neurons mostly make strong 
negative connections to the network, and therefore we refer to this set of neurons as the ‘driven’ module.  
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Supplemental Figure 6 Depth estimation and depth dependency of response latency for different 
modules. A) Probe sites layout. One vertical column of sites was used for current source density (CSD) analysis. 
Vertical spacing is 40 µm. B) Evoked local field potential from an example mouse in V1. C) CSD calculated based 
on evoked potential in B). Middle layer was determined by the first current sink, highlighted by white dot. D) 
Example PSTHs showing evoked spike rates at different depths. Channel at depth of first sink was set to 0 and 
middle layer was defined as ±8 channels around 0, which spans 160 µm. All channels above the middle layer 
were defined as “superficial,” while all channels below the middle layers were defined as “deep.” E) Response 
latency (peak of PSTH) at different depths plotted for ‘driver’ and ‘driven’ ensembles across 19 mice. ‘Driven’ units 
responded earlier than ‘driver’ units (T-test p = 2.2e-25) and were concentrated in the superficial layers.  
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Supplemental Figure 7. Overlay of driver-to-driven and driven-to-driver subnetworks for source areas V1,  LM and 
AM. A) Directed graph representation for between-module subnetworks from source area V1 of one example mouse. Graph 
representation of strong connections (weight value > 2*10-6; larger weight value threshold for visualization purpose). Line color 
indicates the directionality of connection. Red: output from driver neurons in V1 → driven neurons in other areas; blue: input 
from driver neurons in other areas → driven neurons in V1. Each node in the graph represents a recording site in cortex. Identity 
of visual areas is indicated by node color and arranged according to their anatomical location. Nodes in each area are arranged 
clockwise from superficial to deep layers. There is a clear separation of input and output from source area V1 and the separation 
is cortical depth dependent. B) Directed graph representation for between-module subnetworks from source area LM of the 
same example mouse as in A). C) Directed graph representation for between-module subnetworks from source area AM of the 
same example mouse in A). D, E, F) Directed graph of overlaid subnetworks of another example mouse. 
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Supplemental Figure 8 Testing the relationship between PSTH shape and CCG sharp peak. Two 
simulations were performed to test the relationship between the PSTH temporal dynamics of two neurons and 
their fast-timescale correlations, as reflected in the jitter-corrected CCG. The negative control was done by 
generating Poisson spike times with correlated PSTH temporal profiles; then, we tested whether there was a 
sharp peak in the jitter-corrected CCG with jitter window=25ms. A) PSTHs of two neurons (1 ms bin) with 
temporal Pearson’s correlation equal to 0.35. Neuron 1 has an onset earlier than neuron 2. B) Simulated Poisson 
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spike trains based on the PSTHs in A) for the two neurons across repeats. C) Raw CCG (red line) and jittered 
CCG (calculated by jittering spike times large than 25 ms; black line) between neuron 1 and 2 (the probability of 
neuron 1 generating a spike relative to each spike in neuron 2) calculated based on the simulated Poisson spike 
times B). Both CCGs showed a clear peak at a negative time lag, reflecting the fact that over long timescales, 
neuron 1 fires earlier than neuron 2, consistent with the temporal profile of the PSTHs. D) Jitter-corrected CCG 
calculated by subtracting jittered CCG from raw CCG in C). Because there is no fast timescale correlation within 
25ms, predetermined by Poisson process, we didn’t observe any sharp peak in jitter-corrected CCG. This 
negative control indicates that a temporal correlation in the PSTH profile does not necessarily lead to a sharp 
peak in the CCG. 
The positive control was simulated by generating Poisson spike times given uncorrelated PSTH temporal profiles 
but adding additional synchronized spikes to the two simulated spike trains. Then, we tested whether the two spike 
trains showed any brief timescale correlation with jitter-corrected CCG. E) Uncorrelated PSTHs (Pearson’s r=0.01) 
of two neurons. F) Simulated Poisson spike train based on the PSTHs in E) with synchronized spikes (10% of total 
spikes; highlighted in red) added to both neuron 1 and 2. G) Raw and jittered CCGs between simulated spike trains 
F). H) Jitter-corrected CCG calculated by subtracting jittered CCG from raw CCG. The jitter-corrected CCG showed 
a sharp peak at 0 time lag, indicating synchronization of spike times between the two neurons. This result is 
consistent with the injection of synchronized spikes, despite the fact that their PSTH profiles are uncorrelated.  
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