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Survey of spiking in the mouse visual system
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The anatomy of the mammalian visual system, from the retina to the neocortex, is
organized hierarchically’. However, direct observation of cellular-level functional
interactions across this hierarchy is lacking due to the challenge of simultaneously
recording activity across numerous regions. Here we describe alarge, open dataset—
part of the Allen Brain Observatory?—that surveys spiking from tens of thousands of
unitsin six cortical and two thalamic regions in the brains of mice respondingtoa
battery of visual stimuli. Using cross-correlation analysis, we reveal that the
organization of inter-area functional connectivity during visual stimulation mirrors
the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas®. We find that
four classical hierarchical measures—response latency, receptive-field size,
phase-locking to drifting gratings and response decay timescale—are all correlated
with the hierarchy. Moreover, recordings obtained during a visual task reveal that the
correlation between neural activity and behavioural choice also increases along the
hierarchy. Our study provides a foundation for understanding coding and signal
propagation across hierarchically organized cortical and thalamic visual areas.

Mammalian vision is the most widely studied sensory modality. The
investigation of its cellular substrate has yielded insights into how the
stream of photons thatimpinge onto the retinaleads to conscious per-
ception and visuomotor behaviours. However, much of our knowledge
of physiology at the cellular level derives from small-scale studies that
are subject to substantial uncontrolled variation, uneven coverage of
neurons and selective use of stimuli. The ability to validate models
of visual function has been hampered by the absence of large-scale,
standardized and open in vivo physiology datasets*. To address this
shortcoming, we previously developed a two-photon optical physi-
ological pipeline to systematically survey visual responses in genetically
defined cell populations®. However, this methodology lacks the ability

torecord simultaneously with high temporal resolution across many
corticaland subcortical structures. We therefore built acomplementary
pipeline that uses Neuropixels probes® to measure spiking activity in
six cortical visual areas as well as two visual thalamic nuclei: the lateral
geniculate nucleus (LGN) and the lateral posterior nucleus (LP), also
known as the visual pulvinar.

The concept of hierarchy has informed ideas about the architec-
ture of the mammalian visual system for more than 50 years’, and has
inspired powerful multi-layered computational networks® ™. The visual
hierarchy has beeninvestigated most extensively in the macaque, from
the LGN and the primary visual cortex (V1) into frontal eye fields and
beyond"""'¢, The existence of such a hierarchy in the mouse, withiits far
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Fig.1|Astandardized pipeline for electrophysiology in the mouse visual
system. a, Datacollection pipeline, with the average age of mice (in days)
indicated below. b, Schematic of probeinsertion trajectories through visual
cortical (V1,LM, AL, RL, AM, PM) and thalamic (LGN, LP) areas. ¢, Example raster
plotof405 simultaneously recorded units from 8 visual areas during drifting
grating stimuli (15Hz, 2 Hz or 4 Hz), with hippocampal (HPC) local field
potential, mouse running speed and pupil diameter shown below. d, Raster
plots of spike times for different drifting grating stimuli from an exemplar V1
unit. Single-trial responses are represented by astar plot (right), inwhich
stimulus orientation and temporal frequency are indicated by angle and radius,

smaller brain and densely connected cortical network?, isless clear'®2°,

Yet, given the utility of the mouse model, characterizing the presence
and extent of such a hierarchy isimportant.

By analysing anterograde viral tracing with Cre-dependent
adeno-associated viruses (AAV) from1,256 mice, anatomical rules were
previously derived to describe projections into and out of 37 cortical
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respectively, and firing rateisindicated by the intensity of the pink blob.

e, Raster plots and peri-stimulus time histograms of the full-field flash
stimulus, for the same unitasind. f, Raster plot of spike times for 81 conditions
of the Gabor stimulus for the same unit. Summing the spike counts across 45
trialsateachlocation produces aspatial receptive field, shownontheright.
Spike countis quantified over a250-ms window. g, Mean fraction of units with
significantreceptive field across eight visual areas, with hippocampus
included asacontrol (see Methods). Dataare mean +s.d.,and dots show the
results of individual sessions.

and 24 thalamicregions via their layer-specific axonal termination pat-
terns®. An optimization algorithm assigned a hierarchy score to every
regiontorevealahierarchical ordering of visual areas, with the LGN at
the bottom and the higher-order cortical region, antero-medial area
(AM), at the top. However, the importance of this anatomical hierar-
chyisunclear. Functional activity isdynamic and context-dependent,
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so it is unknown how well the flow of spikes follows the anatomical
hierarchy, especially given the presence of all-to-all connectivity”’ and
branching connections®. Therefore, we sought to determine whether
the anatomical hierarchy is reflected in the spiking activity of these
visual areas, linking hierarchical structure to function.

A survey of visually evoked spiking

Werecorded spiking activity across visual cortical and thalamic struc-
tures in awake, head-fixed mice viewing diverse visual stimuli, using
Neuropixels silicon probes® to simultaneously record from hundreds
of neurons with high spatial and temporal resolution?**, This dataset
of about 100,000 units complements our previously released survey
that used optical recordings of calcium-evoked fluorescent activity in
60,000 cortical neurons? (see ref. * for acomparison of the results from
theimaging and electrophysiology datasets). Both datasets are part of
the Allen Brain Observatory—a pipeline of animal husbandry, surgical
procedures, equipment and standard operating procedures, coupled
tostrictactivity-and operator-independent quality-control measures.
All physiological data that passes quality control is made freely and
publicly available via the AllenSDK (https://allensdk.readthedocs.io),
the DANDI Archive (https://gui.dandiarchive.org) and the AWS Registry
of Open Data (https://registry.opendata.aws/allen-brain-observatory/).

Each mouse in this study proceeded through an identical series of
steps, carried out by highly trained staff according to a set of stand-
ard operating procedures (Fig. 1a, Extended Data Fig. 1a-f; see also
http://help.brain-map.org/display/observatory/Documentation). We
used cortical area maps derived fromintrinsic signalimaging of every
mouse to simultaneously target up to six Neuropixels probes to V1
and five higher-order visual cortical areas (latero-medial area (LM),
anterol-ateral area (AL), rostro-lateral area (RL), postero-medial area
(PM) and AM) (Extended Data Fig. 1g-i). The probes were inserted up
to 3.5 mm into the brain to measure responses in the LGN and the LP
thalamicareas (Fig. 1b); the hippocampus and other areas traversed by
thesilicon probes were likewise recorded. This configuration enabled
us to sample the mouse visual system with unprecedented coverage,
creating cellular-resolution activity maps across up to eight cortical
and thalamic visual areas at once (Fig. 1c).

We implemented quality-control procedures to ensure consist-
ent data (Methods, Extended Data Fig. 2), reducing the number of
experiments analysed and presented here from 87 to 58. Extracellu-
larly recorded units were sorted via the Kilosort2 algorithm?*?¢ and
further subjected to quality control (Extended Data Figs. 3, 4). Units
were mapped to structures in the Common Coordinate Framework
Version 3, a3D anatomical atlas?, by imaging fluorescent probe tracks
with optical projection tomography (Extended Data Fig. 5). Overall, we
recorded 682 + 144 units per experiment, 119 + 48 units per probe and
56 +30 units per visual area (Extended Data Fig. 1j), sampling 6.1+ 1.1
visual areas per experiment (Extended Data Fig. 1k).

During each recording session, mice passively viewed a battery of
natural and artificial stimuli (Extended DataFig. 6a-c). Here we focus on
asubset of these—including drifting gratings (Fig. 1d), full-field flashes
(Fig. 1e) and local Gabor patches (Fig. 1f)—to characterize aspects of
hierarchical processing. Units recorded in all eight cortical and tha-
lamic visual areas were highly visually responsive, with 60% displaying
significant spatial receptive fields within the boundaries of the moni-
tor used for stimulus presentation (Fig. 1g, Extended Data Fig. 6d, e;
categorical x* test, P< 0.01). As a control, we searched for significant
receptive fieldsinsimultaneously recorded hippocampal regions (CAl,
CA3 and dentate gyrus), and found them in only 1.4% of units.

A functional hierarchy of visual areas

Aprevious anatomical study®assigned a hierarchy score to each corti-
cal and thalamic region in the mouse, derived using an optimization
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Fig.2|Functional connectivity recapitulates the anatomical hierarchy.

a, Anatomical hierarchy scores of the eight areas of interest recomputed from
ref.?. b, Replotting the anatomical hierarchy scores from a, showing the
differenceinscore betweenall cortical areas. All areas have significantly
different anatomical hierarchy scores, except for RLand LM (Wilcoxon
rank-sumtest, P=0.08; see Methods). c, An example cross-area ‘sharp peak’
spikinginteraction between a pair of unitsin Vland LM.d, Distribution of CCG
peaktimelags betweenV1land LMin one example mouse. The median (3.9 ms)
isshownby theredline. e, Directionality scores calculated from peak offset
distributions across 25 mice for each pair of cortical areas. Statistical testing
(two-sided Wilcoxon rank-sum test) revealed that the peak offset distributions
of neighbouring areas were significantly different from within-area
distributions, except for AL-PM (P=0.08).f, Correlation between
directionality score and anatomical hierarchy score difference (n=21pairs;
lower triangle and diagonal of the matricesinb and e), indicating alink between
structure and function. r,, Pearson correlation coefficient.

algorithmthat considers the set of distinct axonal termination patterns
of connectivity between areas (deeming each as either a feedforward
orafeedback connection), and found the most self-consistent network
architecture out of the set of hierarchical area orderings (Fig. 2a). The
LGN sits at the bottom of the hierarchy, followed by its major target
structure, V1; areas LM, RL, LP and AL reside at intermediate levels,
and areas PM and AM occupy the top level of the areas we studied here.
The higher-order thalamic area, LP, is interconnected with all visual
cortical regions, and resides at an intermediate hierarchical location.

During strong bottom-up, visual stimulation, we anticipated that
activity would propagate up this anatomical hierarchy. The direction-
ality of this bottom-up wave of activity should be visible in pairwise
leader-follower relationships between connected areas. To test for
such a functional hierarchy, we evaluated the directed functional
connectivity using spike cross-correlograms (CCG) between unitsin
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Fig.3|Four measures of hierarchical processing applied to the mouse
visual system. a, Mean response (baseline-subtracted) to a full-field flash
stimulus for unitsin eight visual regions. b, Distribution of time to first spike in
responseto the flash stimulus acrossall unitsin each of eight areas.

¢, Correlationbetween mean time to first spike and hierarchy score obtained
from anatomical tracing studies. d, Outlines of the extent of the mean
receptive field for each area, at 50% of the peak firing rate. Example mean
receptive fields for the LGN and the AM are shown on the left. e, Distribution of
receptive field sizesacross all units. f, Correlation between meanreceptive
field size and anatomical hierarchy score. g, Raster plots showing the response
of exemplar LGN and AM units to a2-Hz drifting grating stimulus, with

different areas®®*° during visual stimulation with drifting gratings.
For each pair of recorded units, we examined whether a functional
connection was present in the CCG, defined as a ‘sharp peak’ with a
shortlatency (within £ 10 ms) and alarge peak amplitude (more than
7-fold greater than the CCG flank standard deviation; see Methods
for details) in the jitter-corrected CCGs (Fig. 2¢). Jitter correction
removes slow timescale correlations larger than the jitter window
(25 ms), yielding 16,119 pairs of units out 0f 2,089,890 possible pairs
within the cortex (Extended Data Fig. 7b; 0.96% + 0.13% per mouse,
n=25mice). These fast-timescale interactions sample the functional
hierarchy between areas (see Fig. 2c for an example pair). If spikesin
thesource arealead spikesinthetargetarea, the distribution of peak
offsets will deviate in the positive direction from 0. For example, the
peak offset distribution between V1and LM showed a significant posi-
tive delay compared to the V1-V1 distribution (Fig. 2d; P=2.6 x 1078,
two-sided Wilcoxon rank-sum test), indicating that V1 neurons—on
average—lead LM neurons during strong visual drive, and thus are
lower in the functional hierarchy.

We computed the distribution of CCG sharp peak time lags for all
functionally connected units across each pair of cortical areasineach

2,146

Anatomical hierarchy score

1,718 2,601 1,311 2,221
40 44 35 50

Anatomical hierarchy score

corresponding modulationindex (MI). h, Distribution of modulationindex
acrossallunits. i, Correlation between mean modulationindex and anatomical
hierarchyscore.j, Mean autocorrelation averaged across all unitsin each area
inthe 250-ms period following the onset of a full-field flash stimulus.

k, Distribution of response decay timescalesacross allunitsin each area.

1, Correlation between mean response decay timescales and anatomical
hierarchy score; n=7,837 units from 58 mice. m, Key indicating the colour code
usedinthegraphs, the number of units perarea and the total number of mice
perarea.See Extended Data Fig. 4b for unit selection criteria. Dataare

mean +95%bootstrap confidenceintervals. n=15,713 units from 58 mice unless
otherwise specified.rs, Spearman correlation coefficient.

mouse, and combined the median of peak offset distributions across
mice (Extended DataFig. 7c, d; see Extended Data Fig. 7afor complete
peak offset distributions between all areas across all mice). On average,
Vlunitslead the activity of units in other areas (Extended DataFig. 7c,
left column); by contrast, area AM follows other regions, indicating
this area resides at the uppermost levels of the hierarchy (Extended
DataFig. 7c, right column).

To assess leader—follower relationships between areas, we defined a
directionality score that quantifies the relative number of positive and
negative time lag connections between any two areas (see Methods).
The matrix of pairwise directionality scores (Fig. 2e) between areas
was very similar to the matrix of anatomical hierarchy score differ-
ences (Fig. 2b) (Pearson’s r=0.74, P=1x107*; see also Extended Data
Fig. 7c). The spatial layout of areas could not account for this corre-
lation in terms of average physical distance (Extended Data Fig. 7e).
Furthermore, this organization was absent during spontaneous activity
(Extended Data Fig. 7f, g), suggesting that the functional hierarchy
we identified reflects population activity driven by bottom-up input.
Network simulations of simple architectures ranging from completely
parallel to purely hierarchical organizations suggest that our empirical
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Fig.4|Higher-order areas signal behaviourally relevant changesinimage
identity more strongly thanlower-order areas. a, Experimental setup for the
active (left) and passive (right) change detection tasks. b, After training, mice
had high hitand low false alarmrates, withanaverage d’ of 2.0 £ 0.1 (n=12 mice,
21sessions). ¢, Raster plots of exemplar units from the LGN, V1and AM before
and after change (n =50 trials).d, Population response averaged over all unitsin
theLGN, Vland AM.Foreacharea, theresponsetothe change and pre-change
imageisshownasadarker and lighterline, respectively. Thelinerepresents the
mean and the shaded areasrepresents.e.m.e, Correlationbetween mean time
tofirstspike afterimage change and anatomical hierarchy score across all eight
areas; dataare mean+95%bootstrap confidence intervals. f, Correlation
between mean change modulationindex and anatomical hierarchy score

CCGobservations are most consistent with aladder-like hierarchy with
abundant feedback (Extended Data Fig. 8).

We next assessed how this ordering of areas correlated with four
classical measures of functional hierarchy™'*', First, we quantified the
temporal latency of evoked responses to full-field flashes. Although
units in each visual area have broadly distributed onsets (Fig. 3a, b),
which is consistent with results in primates®, the mean visual latency
of eachareawas correlated withits anatomical hierarchy score (Fig. 3c;
Pearson’sr=0.95, P=0.00025). Statistical testing revealed significantly
differentlatencies for all pairs of areas, except for LGN-V1, RL-LP, LP-
AL and AM-PM (Extended Data Fig. 9a). Differences in spontaneous
firing rates do not account for these differences in latency (Extended
DataFig. 9b, c).

Second, the size of spatial receptive fields typically increases when
ascending the visual processing stream?>*"*, which is probably due
tothe pooling of convergent inputs from lower regions. We measured
receptive fields using a localized Gabor stimulus (Fig. 3d), and found
asystematicincrease in receptive field size with anatomical hierarchy
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acrossalleightareas. Closed circlesindicateresponses duringactive
behaviour,and opencirclesindicate responses during passive stimulus replay;
dataare mean+95%bootstrap confidenceintervals. g, Schematic of random
forest decoding analysis to identify change versus non-change trials, and
comparison with mouse behaviour. h, Pearson correlation of decoder
prediction (change probability) and mouse behavioural response (hit/miss)
acrosstrials. Dataare mean+s.e.m.across sessions; see Methods for details of
included units. i, Keyindicating the colour code usedinthe graphsine,fandh,
the number of units per areaand the total number of mice per area. The natural
sceneimagesinaand gare shown for schematic purposes. Theimages shown
to the mice are fromrefs. %2,

score (Fig. 3d-f; Pearson’s r=0.97, P= 8.3 x 1075). Statistical testing
revealed significantly different receptive field sizes for all pairs of areas,
except for LM-RL (Extended Data Fig. 9d).

Third, the fraction of cells with phase-dependent grating responses is
auseful measure of hierarchical level because it mirrors receptive field
complexity*. We quantified this with amodulationindex that reflects
phase-dependent responses to drifting gratings®**>. The modulation
index was highest in the LGN, whereas higher areas showed gradu-
ally less phase-dependent modulation (Fig. 3g-i, Pearson’s r=-0.89,
P=0.003). Statistical tests revealed significantly different modulation
indices for all pairs of areas, except for RL-AL and AM-PM (Extended
DataFig. 9e).

Finally, previous work in primate and mouse brains demonstrated
that the ‘timescale’ of neural activity increases in the upper echelons
of the hierarchy'>"*, We assessed intrinsic timescale by fitting an
exponential decay function to the spontaneous spike-count autocor-
relation of each unit during grey screen periods between stimulus
presentations. Whereas this mean intrinsic timescale for each area



was not correlated with the visual hierarchy (Extended Data Fig. 9f, g)
(Pearson’sr=-0.24,P=0.57), the response decay timescale’?, whichis
quantified by fitting an exponential decay function to the spike-count
autocorrelation of individual units during the evoked response to the
full-field flash stimulus (Fig. 3j), was. Higher-order areas had alonger
response decay timescale, and therefore maintain stimulus-evoked
activity over longer temporal windows, than lower stages—an impor-
tant signature of multi-layer processing (Fig. 3j-1; Pearson’s r= 0.86,
P=0.007). Statistical testing revealed significantly distinct response
decay timescales for all pairs of areas, except for LM-AL and AM-PM
(Extended Data Fig. 9h).

Together, these four response metrics—along with our
cross-correlation analysis—support the existence of afunctional hier-
archy that spans the cortical and thalamic visual system. These metrics
arenotdependent onoverall firing rate, which does not correlate with
hierarchy score (Extended Data Fig. 9i,j). Because we densely sampled
units across all cortical layers in each area, we were able to assess the
layer-dependence of each of these metrics and found similar results
(Extended DataFig.10a, b). Analysis of layer-wise CCG interactions indi-
cated that superficial layers (2/3 and 4) were hierarchically lower com-
paredtodeeplayers (5, 6) inthe same area (Extended Data Fig.10c-e).

Therole of this hierarchy should ultimately be related to the behav-
ioural and cognitive operations implemented by the system, because
higher levels are better positioned to integrate sensory input with
behavioural goals. To test whether the hierarchy we found correlates
with behaviourally relevant processing, we measured spiking activity
duringavisual change detection task (n=4,057 units from12 mice). In
this go/no-go task, mice see briefly presented natural scenes (250 ms
stimulus presentations, separated by 500 ms grey screen) (Fig. 4a,
left). Ineach trial, arepeating ‘reference’image changesidentity aftera
random number of presentations, and mice are rewarded for detecting
the change by licking a spout®”*, To assess hierarchical processing dur-
ing active behaviour compared with passive stimulation, we separated
each recording session into two blocks: first, the mice performed the
behavioural task for 60 min; second, the lick spout was retracted and
the same sequence of visual stimuli were presented to the mice under
these passive viewing conditions (Fig. 4a, right).

Mice performed with high hit and low false alarm rates (mean hit
rate = 0.78, mean false alarm rate = 0.13, and mean detection sensi-
tivity (d’) =2.0 £ 0.1, in 12 mice, 21 sessions; Fig. 4b). Units recorded
during the task had clear visually evoked spiking responses to the
images and showed greater evoked spike rates when the stimulus
changed identity (from A to B at ¢ = 0 in Fig. 4c, d). Consistent with
results described above for full-field flashes, the first spike latency for
image responses during behaviour was correlated with the anatomical
hierarchy score (Fig. 4e).

When humans andrats detect changesinastream of stimuli, change
detectionsignalsincreaseathigher cortical levels (the oddballP300)* .,
To detect such mismatch signals in the mice in this experiment, we
computed a ‘change modulation index’ (CMI) that captures the dif-
ferential response to the same natural image when it was the refer-
ence (pre-change) compared with when it was the change image (see
Methods). During active behaviour, CMI was positive for each area,
which indicates that a change in image identity elicits stronger
responses compared with presenting the same image repeatedly. More
importantly, CMI systematically increased along the hierarchy from
the LGN to the AM (Fig. 4f; Pearson’s r = 0.83, P=0.011). Consistent
witharolein change perception, we found asignificant correlation of
CMIwith hierarchy on hit but not on miss trials (Extended Data Fig. 9k;
hit trials, Pearson’s r = 0.85, P= 0.007; miss trials, Pearson’s r = 0.51,
P=0.2). Moreover, CMI values were larger during active behaviour
compared with passive viewing of the same stimulus sequence, which
indicates that change signals cannot be explained solely by passive
effects, such as adaptation to the repeated reference image (Fig. 4f).
Other aspects of neural activity during the task—including the baseline

firing rate, response to the pre-change image and the response to the
change image—were not correlated with hierarchy score (Extended
DataFig. 9I-n).

Toassess whether activity at higher levels more closely covaries with
the decisions made by the mouse, we used random forest decoders
trained on the spiking activity of units withinindividual areas to predict
when the image either did or did not change (Fig. 4g, Extended Data
Fig.90). Decoders were separately trained for 20 units withineach area
and performed significantly better than chance across trials, indicating
that change trials could be read out from all 8 areas (Extended Data
Fig. 9p). Notably, however, we found a strong increase in trial-wise
decoder-behaviour covariation at higher levels of the hierarchy, start-
ingwithno correlation at the level of the LGN (Fig. 4h; Pearson’sr=0.88,
P=0.004; see Methods). In other words, change-related signals are
amplified at higher levels of the visual hierarchy, and spiking activity
at these stages is more correlated with behavioural choices, which
suggests that hierarchical processing is relevant for behaviour.

Discussion

Onelong-term goal of the Allen Institute is to systematically survey neu-
ronalactivity in away thatis minimally biased, maximally reproducible
and freely accessible to all*>. Here we add to our Allen Brain Observatory
database withasurvey of spiking activity from approximately 100,000
units recorded by Neuropixels probes. In this first report on our sur-
vey, we used CCG time-lag analysis to uncover a marked correspond-
ence between the anatomical and functional network organization of
mouse cortical visual areas during sensory drive (Fig. 2f). Four popular
measures of hierarchical processing—response latency, receptive field
size, degree of phase modulation by a drifting grating, and response
decay timescale—all changed systematically across the eight cortical
and thalamic visual regions we examined (Fig. 3), as did change detec-
tionsignals (Fig. 4f), especially during active behaviour (compared to
passive viewing) and on trials in which the mouse correctly perceived a
stimulus change (Extended Data Fig. 9k). This suggests that unexpected
stimuli are amplified by successive levels of the hierarchy®#*3, aresult
consistent with general theories of hierarchical predictive process-
ing**. Moreover, the behaviouralimportance of the hierarchy is further
supported by our finding that higher levels have stronger trial-wise
covariation with mouse behaviour than do lower ones (Fig. 4h).

Correlating functional metrics with asingle anatomical variable—the
hierarchy score—only serves as a crude, first-order characterization.
Although, to our knowledge, we recorded spiking activity simultane-
ously from more mouse visual areas than any previous study, we sam-
pled only 6 of the 16 extant cortical visual areas®. The primate visual
system is organized into distinct processing streams*®*’; there is also
anatomical and functional evidence for parallel streams in mice'**$-,
The cortex also displays additional levels of organization, including
functional sub-modules and parallel processing streams'®?-**# These
diverse aspects must be incorporated to establish a more complete
mapping between cortical structure and function.
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Methods

No statistical methods were used to predetermine sample size. The
experiments were not randomized and the investigators were not
blinded to allocation during experiments and outcome assessment.

Mice

Mice were maintained in the Allen Institute for Brain Science animal
facility and used in accordance with protocols approved by the Allen
Institute’s Institutional Animal Care and Use Committee. The bulk of
experiments used C57BL/6) wild-type mice (n=30), supplemented by
recordingsinthree transgenic lines (n=8 Pvalb-IRES-Cre x Ai32,n=12
Sst-IRES-Cre x Ai32,and n=8 Vip-IRES-Cre x Ai32), to facilitate theiden-
tification of genetically defined inhibitory cell types via opto-tagging™.

Wild-type C57BL/6) mice were purchased from Jackson Laboratories
at postnatal day (P)25-50. For experiments involving opto-tagging of
inhibitory cells, Pvalb-IRES-Cre, Vip-IRES-Cre and Sst-IRES-Cre mice
werebredin-house and crossed withan Ai32 channelrhodopsinreporter
line®*. Pvalb-IRES-Cre;Ai32 breeding sets (pairs and trios) consisted of
heterozygous Pvalb-IRES-Cre mice crossed with either heterozygous
or homozygous Ai32(RCL-ChR2(H134R)_EYFP) mice. Pvalb-IRES-Cre
is expressed in the male germline. To avoid germline deletion of the
stop codon in the loxP-STOP-loxP cassette, Pvalb-IRES-Cre;Ai32 mice
were not used as breeders. Sst-IRES-Cre;Ai32 breeding sets (pairs
and trios) consisted of heterozygous Sst-IRES-Cre mice crossed with
either heterozygous or homozygous Ai32(RCL-ChR2(H134R)_EYFP)
mice. Vip-IRES-Cre;Ai32 breeding sets (pairs and trios) consisted of
heterozygous Vip-IRES-Cre mice crossed with either heterozygous
or homozygous Ai32(RCL-ChR2(H134R)_EYFP) mice. Cre* cells from
Ai32 lines are highly photosensitive, owing to the expression® of
Channelrhodopsin-2.

After surgery, all mice were single-housed and maintained on a
reverse 12-h light cycle in a shared facility with room temperatures
between 20 and 22 °C and humidity between 30 and 70%. All experi-
ments were performed during the dark cycle. For passive viewing
experiments, mice were given ad libitum access to food and water.
For behavioural experiments, mice were given an amount of water
required to maintain 85% of their initial body weight, with ad libitum
access to food.

Surgery
Headframe design. To enable co-registration across surgical, intrinsic
signalimaging, and electrophysiology rigs, each mouse wasimplanted
with agrade 5 titanium headframe that provides access to the brain
via a cranial window and permits head fixation in a reproducible con-
figuration® The cranial window angle was at 23° of roll and 6° of pitch,
referenced toaplane passing throughlambda and bregmaand the me-
diolateral axis. Use of this headframe allowed the 5 mm craniotomy to
berepeatability centred atx=-2.8 mmandy=1.3mm (originatlambda).
The headframe was glued to ablack acrylic photopolymer well that
served four functions: (1) shielding the craniotomy and probes during
the experiment, (2) providing asurface for precisely aligning the inser-
tion window, (3) routeing the animal ground to an exposed gold pin,
and (4) holding threads for a plastic cap that protects the craniotomy
before and after the experiment.

Surgical procedures. A pre-operative injection of dexamethasone
(3.2mgkg™, subcutaneously (s.c.)) was administered 1 h before surgery
toreduce swelling and postoperative pain by decreasing inflammation.
Mice wereinitially anesthetized with 5% isoflurane (1-3 min) and placed
inastereotaxic frame (Model 1900, Kopf). Isoflurane levels were main-
tained at1.5-2.5% for the duration of the surgery. Body temperature was
maintained at 37.5 °C. Carprofen was administered for pain manage-
ment (5-10 mg kg™, s.c.) and atropine was administered to suppress
bronchial secretions and regulate hearth rhythm (0.02-0.05mgmgkg™,

s.c.). Anincision was made to remove skin, and the exposed skull was
levelled with respect to pitch (bregma-lambdalevel), roll and yaw.
The headframe was placed on the skull and fixed in place with White
C&B Metabond (Parkell). Once the Metabond was dry, the mouse was
placed in a custom clamp to position the skull at a rotated angle of
20°, to facilitate creation of the craniotomy over the visual cortex. A
circular piece of skull 5 mmin diameter was removed, and adurotomy
was performed. The brain was covered by a 5-mm-diameter circular
glass coverslip, with a1-mm lip extending over the intact skull. The
bottom of the coverslip was coated with a layer of polydimethylsilox-
ane (SYLGARD 184, Sigma-Aldrich) to reduce to reduce adhesion to
thebrainsurface. The coverslip was secured to the skull with Vetbond
(Patterson Veterinary)*®. Kwik-Cast (World Precision Instruments) was
added around the coverslip to further seal theimplant, and Metabond
bridges between the coverslip and the headframe well were created
to hold the Kwik-Castin place. At the end of the procedure, but before
recovery from anesthesia, the mouse was transferred to aphotodocu-
mentation stationto capture aspatially registered image of the cranial
window (Extended Data Fig. 1a).

Surgery quality control. In cases of excessive bleeding or other com-
plications, the surgical procedure was aborted and the mouse was
euthanized. Mice that completed surgery entered a7-10 day recovery
period thatincluded regular checks for overall health, cranial window
clarity and brain health. If mice failed the first health check, they re-
ceived another one the following week. Mice that exhibited signs of
deteriorating health or damaged brain surface vasculature were not
passed on to the next step. Out of 105 mice entering the surgery step,
4 wereremoved from the pipeline due to quality control failures at this
stage (Extended Data Fig. 2a).

Intrinsic signalimaging

Intrinsic signal imaging (ISI) measures the haemodynamic response
of the cortex to visual stimulation across the entire field of view. This
technique can be used to obtain retinotopic maps representing the
spatial relationship of the visual field (or, in this case, coordinate posi-
tion on the stimulus monitor) to locations within each cortical area.
This mapping procedure was used to delineate functionally defined
visual area boundaries to enable targeting of Neuropixels probes to
retinotopically defined locations in primary and secondary visual
areas”.

Data acquisition. Mice were lightly anesthetized with 1-1.4%isoflurane
administered with aSomnoSuite (model 715; Kent Scientific) and vital
signs were monitored with a PhysioSuite (model PS-MSTAT-RT). Eye
drops (Lacri99 Lube Lubricant Eye Ointment; Refresh) were applied
to maintain hydration and clarity of eyes during anesthesia. Imaging
sessions beganwith a vasculatureimage acquired under greenillumina-
tion (527-nm LEDs; Cree., C503B-GCN-CY0C0791). Next, the imaging
plane was defocused between 500 pm and 1,500 pmalong the optical
axis, to match our established retinotopic mapping procedure® The
haemodynamic response to a visual stimulus was imaged under red
light (635-nm LEDs; Avago Technologies, HLMP-EGO8-Y2000) with
an Andor Zyla 5.510 tap sCMOS camera. The stimulus consisted of an
alternating checkerboard pattern (20° wide bar, 25° square size) moving
across amean luminance grey background. On each trial, the stimulus
bar was swept across the four cardinal axes 10 times in each direction
atarate® of 0.1 Hz. Up to 10 trials were performed on each mouse.

Data processing. Aminimum of three trials were averaged to produce
altitude and azimuth phase maps, calculated from the discrete Fourier
transform of each pixel. A ‘sign map’ was produced from the phase
maps by taking the sine of the angle between the altitude and azimuth
map gradients. In the sign maps, each cortical visual area appears as
acontiguous red or blue region®. These maps are used to confirm the
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cortical areaidentity of each probe insertion, using the vasculature as
fiducial markers (Extended Data Fig. 1b, h, i).

The altitude and azimuth maps were also used to create a map of
eccentricity from the centre of visual space (the intersection of 0°
altitude and 0° azimuth). Because the actual centre of gaze will vary
from mouse to mouse, the eccentricity map was shifted to align with
the screen coordinates at the centre of V1 (which maps to the centre of
theretina). This V1-aligned eccentricity map was used for probe target-
ing, to ensure that recorded neurons represent a consistent region on
theretina, approximately at the centre of the right visual hemifield.

ISI quality control. The quality control process for the ISI-derived
maps included four distinct inspection steps:

(1) The brain surface and vasculature images were inspected
post-acquisition for clarity, focus, and position of the cranial window
within the field of view.

(2) Individual trials were inspected for visual coverage range and
continuity of phase maps, localization of the signal from the amplitude
maps and stereotypical organization of sign maps. Only trialsrespect-
ing these criteriawereincludedin the final average, and aminimum of
three trials were required.

(3) Visual area boundaries were delineated using automated seg-
mentation, and maps were curated on the basis of stringent criteriato
ensure data quality. The automated segmentation and identification of
aminimum of six visual areas including V1,LM, RL, AL, AMand PM was
required. Amaximum of three manual adjustments were permitted to
compensate for algorithm inefficiency.

(4) Each processed retinotopic map was inspected for coverage range
(35-60° altitude and 60-100° azimuth), bias (absolute value of the
difference between max and min of altitude or azimuth range; <10°),
alignment of the centre of retinotopic eccentricity with the centroid
of V1(<15° apart), and the area size of V1 (>2.8 cm?).

If quality control was not passed after the first round of ISImapping,
the procedure was repeated up to two more times to obtain a pass-
ing map. In addition to the quality control procedures carried out on
the ISI-derived maps, the vasculature images were also examined for
the presence of white artefacts on the brain surface. White artefacts,
anindicator of potential brain damage, were grounds for failing the
mouse out of the pipeline. Out of 101 mice entering ISI, 9 did not pass
onto habituation owing to quality control failures during this step
(Extended DataFig. 2b).

Habituation and behaviour training

Habituation for passive viewing experiments. Mice underwent two
weeks of habituation in sound-attenuated training boxes containing
a headframe holder, running wheel and stimulus monitor (Extended
DataFig.1c). Each mouse was trained by the same operator throughout
the two-week period. During the first week, the operator gently handles
the mice, introduces them to the running wheel, and head-fixes them
with progressively longer durations each day. During the second week,
micerunfreely onthe wheel and are exposed to visual stimulifor 10 to
50min perday. Thefollowingweek, mice undergo habituation sessions of
75minand 100 minontherecordingrig, in which they view a truncated
version of the same stimulus that will be shown during the experiment.

Behaviour training. A subset of mice were trained to performachange
detection task in which one of 8 natural images was continuously
flashed (250-msimage presentation followed by 500-ms grey screen)
and mice were rewarded for licking when the image identity changed
(Fig.4a). The change detection task has been described in detail previ-
ously¥. Inbrief, for each trial the time ofimage change was drawn from
an exponential distribution with a minimum of 5image flashes (3.75 s)
and amaximum of 11 flashes (8.255s). Licking before the image change
restarted the trial. Trials in which the mouse licked within 750 ms of
image change were ‘hits’, whereas licks within 750 ms of non-change

catch trials (occurring at the same distribution of times since the last
change as change trials) were classified as false alarms (Fig. 4b). Mice
must perform the task with a @’ of greater than 1and have at least 100
contingent (non-aborted) trials for 3 consecutive days before moving
totherecordingrig.

Habituation quality control. Upon completion of the second week
of habituation, mice received an assessment of overall stress levels
that reflected observations made by the trainer, including coat ap-
pearance, components of the mouse grimace scale and overall body
movements. Out of 92 mice entering habituation for passive viewing
experiments, 2 did not pass on to the insertion window implant step
(Extended DataFig. 2c).

Insertion window implant

Window generation. After the completion of a successful IS map,
a custom insertion window was generated for each mouse. First, six
insertion targets were manually drawn on the V1-aligned eccentricity
map using aweb-based annotation tool. Targets were positioned at the
centre of retinotopy of V1, LM, AL, AM and PM; because the retinotopic
centre of RLoften lies onthe boundary between RL and S1barrel cortex,
the target location was adjusted to be closer to the geometric centre
ofthisarea. The coordinates of each target were used to automatically
generate the outlines of the insertion window, which was subsequently
laser-cut out of 0.5 mm clear PETG plastic (Ponoko). When seated in
the headframe well, the window facilitates access to the brain via holes
over each of the six visual areas. A solidified agarose/ACSF mixture
injected between the brain and the window stabilizes the brain during
therecording.

Surgical procedure. On the day of recording, the cranial coverslip
was removed and replaced with aninsertion window containing holes
aligned to six cortical visual areas. First, the mouse was anesthetized
with isoflurane (3-5% induction and 1.5% maintenance, 100% O,) and
eyeswere protected withocular lubricant (IDrop, VetPLUS). Body tem-
perature was maintained at 37.5 °C (TC-1000 temperature controller,
CWE, Incorporated). Metabond bridges were removed from the glass
cranialwindow, followed by the sealing layer of Kwik-Cast. Using a2-mm
silicone suction cup, the cranial window was gently lifted to expose
the brain. The insertion window was then placed in the headframe
well and sealed with Metabond. An agarose mixture was injected un-
derneath the window and allowed to solidify. The mixture consisted
of 0.4 g high EEO Agarose (Sigma-Aldrich), 0.42 g Certified Low-Melt
Agarose (BioRad), and 20.5 mI ACSF (135.0 mM NacCl, 5.4 mMKCI, 1.0 mM
MgCl,, 1.8 mM CacCl,, 5.0 mM HEPES). This mixture was optimized to
be firm enough to stabilize the brain with minimal probe drift, but pli-
able enough to allow the probes to pass through without bending. A
layer of silicone oil (30,000 cSt, Aldrich) was added over the holes in
the insertion window to prevent the agarose from drying (Extended
DataFig.1d). A3D-printed plastic cap was screwed into the headframe
well to keep out cage debris. At the end of this procedure, mice were
returned to their home cages for1-2 h.

Insertion window implant quality control. Three out of 90 mice did
not pass through to the recording step owing to procedure failures dur-
ingimplantation of the insertion window. These failures were caused by
the headframe comingloose from the skull or excessive bleeding after
removal of the cranial window, after which the mice were euthanized
(Extended DataFig. 2d).

Neuropixels recordings

Probes. All neural recordings were carried out with Neuropixels
probes®. Each probe contains 960 recording sites, a subset of 374
(‘Neuropixels 3a’) or 383 (‘Neuropixels 1.0") of which can be configured
for recording at any given time. The electrodes closest to the tip were



always used, providing a maximum of 3.84 mm of tissue coverage. The
sites are oriented in a checkerboard pattern ona 70 pm wide x 10 mm
long shank. Neural signals are routed to anintegrated base containing
amplification, digitization and multiplexing circuitry. The signals from
eachrecordingsite are splitin hardware into a spike band (30-kHz sam-
plingrate, 500-Hz high-pass filter) and an LFP band (2.5-kHz sampling
rate,1,000-Hz low-passfilter). Owing to their dense site configuration
(20-pm vertical separation along the entire length of the shank), each
probe has the capacity to record hundreds of neurons at the same time.
Our goal was to insert six probes per mouse. Overall, we achieved a
penetrationsuccess of 5.7 probes per mouse, with failures due todura
regrowth, collisions with the protective cone or opto-tagging fibre
optic cable, or probe breakage during manipulation.

The base of each probe contains 32 10-bit analogue-to-digital con-
verters (ADCs), each of which are connected to 12 spike-band channels
and 12 LFP-band channels via multiplexers. A full cycle of digitization
requires 156 samples: 12 samples from each of 12 spike-band channels,
and 1sample from each of 12 LFP-band channels. Each ADC serves a
contiguous bank of odd or even channels, so ADC1digitizes channels
[1,3,5,...,23], ADC2digitizes channels[2,4,6,...,24], ADC 3 digitizes chan-
nels[25,27,29,...,47], etc. Because of the need for interleaved sampling,
common-mode noise will be shared across all channels that are acquired
simultaneously, for example, [1,2,25,26,49,50,...,361,362].

Experimental rig. The experimental rig (Extended Data Fig. 1g) was
designed to allow six Neuropixels probes to penetrate the brain ap-
proximately perpendicular to the surface of the visual cortex. Each
probeis mounted on a3-axis micromanipulator (New Scale Technolo-
gies), whichareinturnmounted onasolid aluminium plate, known as
the probe cartridge. The cartridge can be removed from the rig using
a pair of pneumatic tool-changers, to facilitate probe replacement
and maintenance.

Workflow sequencing engine. The experimental procedure was
guided by a work sequencing engine (WSE), a custom graphical user
interface (GUI) writtenin Python. This software ensured that all experi-
mental steps were carried outinthe correct order, reducing trial-to-trial
variability and optimizing operator efficiency. The GUl logged the
operator ID, mouse ID and session ID, and ensured that all hardware
and software were properly configured. The WSE was also used to start
and stop the visual stimulus, the body- and eye-tracking cameras, and
Neuropixels data acquisition.

Probe alignment. The tip of each probe was aligned to its associated
opening in the insertion window using a coordinate transformation
obtained viaaprevious calibration procedure. The XYlocations of the
six visual areatargets were supplied by the WSE, and these values were
translated into XYZ coordinates for each 3-axis manipulator using a
custom Python script. The operator then moved each probeinto place
withajoystick, with the probes fully retracted along the insertion axis.

Application of CM-Dil. CM-Dil (1 mM in ethanol; Thermo Fisher,
V22888) was used to localize probes during the ex vivo imaging step
because its fluorescence is maintained after brain clearing, and it has
alimited diffusion radius. The probes were coated with CM-Dil before
eachrecording by immersing them one by one into a well filled with
dye, for approximately 1 min each.

Head fixation. The mouse was placed on the running wheel and fixed
to the headframe clamp with three set screws. Next, the plastic cap
was removed from the headframe well and an aluminium cone with
3D-printed wings was lowered to prevent the mouse’s tail from contact-
ing the probes. Aninfrared dichroic mirror was placed in front of the
righteye toallow the eye-tracking camerato operate without interfer-
ence from the visual stimulus. A black curtain was then lowered over

thefront of therig, placing the mouse in complete darkness except for
the visual stimulus monitor.

Grounding. A 32 AWG silver wire (A-M Systems) was epoxied to the
headframe before the initial headframe/cranial window surgery. This
wire becomes electrically conductive with the brain surface after the
application of the ACSF/agarose mixture beneath theinsertion window.
The wire was pre-soldered to a gold pin embedded in the headframe
well, which mates with a second gold pin on the protective cone. The
cone pin was soldered to 22 AWG hook-up wire (SparkFun Electron-
ics), which was connected to both the behaviour stage and the probe
ground. Before the experiment, the brain-to-probe ground path was
checked using a multimeter.

The reference connection on the Neuropixels probes was per-
manently soldered to ground using a silver wire, and all recordings
were made using an external reference configuration. The headstage
grounds (which are contiguous with the Neuropixels probe grounds)
were connected together with 36 AWG copper wire (Phoenix Wire). For
Neuropixels 3a, two probes had a direct path to animal ground, and the
others were wired up serially. All probes were also connected to the
mainground via the data cable (a dual coaxial cable). For Neuropixels
1.0, all probes were connected in parallel to animal ground, and were
not connected to the main ground through the data cable (a single
twisted pair cable).

Probe insertion. The probe cartridge wasiinitially held approximately
30 cmabove themouse. After the mouse was securedin the headframe,
the cartridge was lowered so the probe tips were approximately 2.5-mm
above thebrainsurface. The probes were then manually lowered one by
oneto the brain surface until spikes were visible on the electrodes clos-
esttothetip. After the probes penetrated the braintoadepth of around
100 pm, they were inserted automatically at a rate of 200 pm min™
(total of 3.5 mm or less in the brain) to avoid damage caused by rapid
insertion®. After the probes reached their targets, they were allowed
tosettle for 5-10 min. Photo-documentation was taken with the probes
fully retracted, after the probes reached the brain surface (Extended
DataFig.1e), and again after the probes were fully inserted.

Data acquisition and synchronization. Neuropixels data was acquired
at 30 kHz (spike band) and 2.5 kHz (LFP band) using the Open Ephys
GUI®., Gainsettings of 500x and 250x were used for the spike band and
LFP band, respectively. Each probe was either connected to adedicated
FPGA streaming data over Ethernet (Neuropixels 3a) or a PXle card
inside a National Instruments chassis (Neuropixels 1.0). Raw neural
data was streamed to a compressed format for archiving, which was
extracted before analysis.

Videos of the eye and body were acquired at 30 Hz. The angu-
lar velocity of the running wheel was recorded at the time of each
stimulus frame, at approximately 60 Hz. Synchronization signals for
each frame were acquired by a dedicated computer with a National
Instruments card acquiring digital inputs at 100 kHz, which was
considered the master clock. A 32-bit digital ‘barcode’ was sent
with an Arduino Uno (SparkFun DEV-11021) every 30 s to synchro-
nize all devices with the neural data. Each Neuropixels probe has
anindependent sample rate between 29,999.90 Hz and 30,000.31
Hz, makingit necessary to align the samples offline to achieve pre-
cise synchronization. The synchronization procedure used the
first matching barcode between each probe and the master clock
to determine the clock offset, and the last matching barcode to
determine the clock scaling factor. If probe data acquisition was
interrupted at any point during the experiment, each contiguous
chunk of datawas aligned separately. Because one LFP band sample
was always acquired after every 12th spike band sample, these data
streams could be synchronized automatically once the spike band
clock rate has been determined.
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To synchronize the visual stimulus to the master clock, a silicon
photodiode (PDA36A, Thorlabs) was placed on the stimulus monitor
abovea‘syncsquare’ that flips fromblack to white every 60 frames. The
analogue photodiode signal was thresholded and recorded as a digital
eventby the sync computer. Individual frame times were reconstructed
by interpolating between the photodiode on/off events.

Stimulus monitor. Visual stimuli were generated using custom scripts
based on PsychoPy®? and were displayed using an ASUS PA248Q LCD
monitor, with 1,920 x 1,200 pixels (55.7 cm wide, 60 Hz refresh rate).
Stimuli were presented monocularly, and the monitor was positioned
15cmfromtheright eye of the mouse and spanned 120° x 95° of visual
space before stimulus warping. Each monitor was gamma corrected
and had amean luminance of 50 cd m™. To account for the close view-
ing angle of the mouse, a spherical warping was applied to all stimuli
to ensure that the apparent size, speed and spatial frequency were
constant across the monitor as seen from the mouse’s perspective.

Stimuli for passive viewing experiments. All experiments began with
areceptive field mapping stimulus consisting of 2 Hz, 0.04 cycles per
degreedrifting gratings with a20° circular mask. These Gabor patches
randomly appeared at one of 81 locations onthe screen (9 x 9 grid) for
250 ms at atime, with no blank interval. The receptive field mapping
stimulus was followed by a series of dark or light full-field flashes, lasting
250 ms each and separated by a2-sinter-trial interval.

Next, mice were shown one of two possible stimulus sets. The first,
called ‘Brain Observatory 1.1’ is a concatenation of two sessions from
the Two-Photon Imaging Brain Observatory? (Extended Data Fig. 6b).
Drifting gratings were shown with a spatial frequency of 0.04 cycles
per degree, 80% contrast, 8 directions (0°, 45°, 90°,135°,180°, 225°,
270°,315°, clockwise from 0° =right-to-left) and 5 temporal frequen-
cies (1, 2,4, 8 and 15 Hz), with 15 repeats per condition. Static grat-
ings were shown at 6 different orientations (0°, 30°, 60°, 90°,120°,
150°, clockwise from 0° = vertical), 5 spatial frequencies (0.02, 0.04,
0.08, 0.16, 0.32 cycles per degree) and 4 phases (0, 0.25, 0.5, 0.75);
they are presented for 0.25 s, with no intervening grey period. The
Natural Images stimulus consisted of 118 natural images taken from
the Berkeley Segmentation Dataset®, the van Hateren Natural Image
Dataset™ and the McGill Calibrated Colour Image Database®. The
images were presented ingreyscale and were contrast-normalized and
resized to 1,174 x 918 pixels. The images were presented in a random
order for 0.25 s each, with no intervening grey period. Two natural
movie clips were taken from the opening scene of the movie Touch of
Evil®. Natural Movie One was a 30-s clip repeated 20 times (2 blocks
of'10), while Natural Movie Three was a120-s clip repeated 10 times
(2blocks of 5). All clips were contrast-normalized and were presented
ingreyscale at 30 fps.

Thesecond stimulus set, called ‘Functional Connectivity’, consisted
of asubset of the stimuli from the Brain Observatory 1.1set shown with
a higher number of repeats (Extended Data Fig. 6¢). Drifting gratings
were presented at 4 directions and one temporal frequency (2 Hz) with
75 repeats. A contrast-tuning stimulus consisting of drifting gratings at
4 directions (0°,45°,90°,135°, clockwise from 0° =left-to-right) and 9
contrasts (0.01,0.02,0.04,0.08,0.13,0.2,0.35,0.6,1.0) was also shown.
The Natural Movie One stimulus was presented a total of 60 times, with
an additional 20 repeats of a temporally shuffled version. Last, a dot
motion stimulus consisting of approximately 200 1.5°-radius white
dots onamean-luminance grey background moving at one of 7 speeds
(0°s7,16°s7,32°s7, 64°57,128°s7,256° s, 512°s™) in four different
directions (—-45°, 0°, 45°,90°; + = clockwise; 0° = left-to-right) at 90%
coherence was shown.

Stimuli for behavioural experiments. Mice carried out one hour of
a change detection task”. After the behaviour session, the lick spout
wasretracted and receptive field mapping stimuli and full-field flashes

were presented for 25 min, with the same parameters as those used
in the passive viewing experiments. Finally, the exact sequence and
timing of images viewed during the behavioural task were re-played
(one hour). All other aspects of the rig—including the running wheel,
stimulus monitor, and electrophysiological recordings—were the same
as for the passive viewing experiments.

Probe removal and cleaning. When the stimulus set was over, probes
wereretracted from the brainatarate of Imms™, after which the probe
cartridge was raised toits full height. The protective cap was screwed
into the headframe well, then mice were removed from head fixation
andreturned to their home cages overnight. Probes wereimmersedin
awell of 1% Tergazyme for around 12 h, which was sufficient to remove
tissue and silicone oil before the next recording session.

Quality control for the Neuropixels recording session. Neuropixels
recording sessions were subjected to the following quality control
criteria (Extended Data Fig. 2e):

Eye foam. If white build-up around the eye obscured the pupil, the
experiment was cancelled and the session was failed (8 mice).

Bleeding.Ifbleeding resulting from the window implant or the probe
insertion obscured the vasculature, the session was failed (4 mice).

Probe insertion. If fewer than four probes successfully entered the
brain, the session was failed (1 mouse).

Dropped frames. If the stimulus monitor photodiode measured more
than 60 delayed frames, the session was failed (1 mouse).

Missing files. If any critical files were overwritten, the session was
failed (2 mice).

Noise levels. If high root mean square noise levels in the spike band
persisted after median subtraction, the session was failed (4 mice).

Probedrift.1f one or more probes exhibited more than 80 pm of drift
over the course of the experiment, the session was failed (6 mice).
Typical drift levels were around 40 um, and drift levels were highly
correlated across probes.

In total, out of 87 mice entering the recording step, 61 passed
session-level quality control.

Ex vivoimaging

Tissue clearing. Mice were perfused with 4% paraformaldehyde (PFA)
(afterinduction with 5% isoflurane and 11min™ of O,). The brains were
preserved in 4% PFA, rinsed with 1x PBS the next morning, and stored
at4 °Cin PBS. Next, brains were run through a tissue clearing process
based on the iDISCO method®. This procedure uses different solvents
thatdehydrate and delipidate the tissue. The first day, the brains were
immersed in different concentrations of methanol (20,40, 60%) for an
hour each, then overnight in 80% methanol. On the second day, they
weredippedinto100% methanol (twice for one hour) and thenintoamix-
ture of 1/3 methanol and 2/3 dichloromethane overnight. On the third
day, the brains were moved from pure dichloromethane (2 x 20 min)
to puredibenzyl ether, where they remained for 2-3 days until clearing
was complete (Extended DataFig. 5a).

Optical projection tomography. Whole-brain 3D imaging was accom-
plished with optical projection tomography (OPT)%¢ %%, The OPT instru-
ment consisted of collimated light sources for transmitted illumination
(on-axis white LED, Thorlabs MNWHL4 with Thorlabs SM2F32-A lens
and Thorlabs DG20-600 diffuser) or fluorescence excitation (off-axis
Thorlabs M530L3, with Thorlabs ACL2520U-DG6-A lens and Chroma
ET535/70m-2P diffuser), a 0.5 telecentric lens (Edmund Optics 62-932)
with emission filter (575 nm LP, Edmund Optics 64-635), and acamera
(IDS UI-3280CP). The specimen was mounted on a rotating magnetic
chuckattached to astepper motor, which positioned the specimen on
the optical axis and within a glass cuvette filled with dibenzyl ether.
The stepper motor and illumination triggering were controlled with
an Arduino Uno (SparkFun DEV-11021) and custom shield including a



Big Easy Driver (SparkFun ROB-12859). Instrument communication and
image capture was accomplished with MicroManager®.

Aseries of 400 images were captured with transmitted LED illumina-
tionwitheachimage captured with the specimenrotated 0.9°relative
to the previous position. This series of 400 images was repeated with
the fluorescence excitation LED. Each channel was stored as aseparate
OME-TIFF dataset before extracting individual planes and metadata
required for reconstruction using a custom Python script (Extended
DataFig. 5b).

Isotropic 3D volumes were reconstructed from these projec-
tion images using NRecon (Bruker). The rotation axis offset and
region-of-interest bounds were set for each image series pair using
the transmitted channel dataset, then the same values applied to the
fluorescence channel dataset. Asmoothing level of 3 using a Gaussian
kernel was applied to allimages. Reconstructions were exported as
single-plane 16-bit TIFF images taken along the rotation axis with final
voxel size of 7.9 um per side (Extended Data Fig. 5¢).

Registering probes to the common coordinate framework. Recon-
structed brains were downsampled to 10 pm per voxel and roughly
aligned to the Allen Institute Common Coordinate Framework (CCFv3)
template brain using an affine transform. The volume was then cropped
toasize 0f1,023x1,024 x1,024 and converted to Drishti format (https://
github.com/nci/drishti). Next, 6-54 registration points were markedin
upto14 coronalslices of the individual brain by comparing to the CCFv3
template brain” (Extended Data Fig. 5¢). Fluorescent probe tracks
were manually labelled in coronalsslices of the individual brain, and the
best-fit line was found using singular value decomposition (Extended
DataFig.5e). Theregistration points were used to definea3D nonlinear
transform (VTK thinPlateSplineTransform), which was used to translate
each pointalongthe probetrackinto the CCFv3 coordinate space. Each
CCFv3 coordinate corresponds to aunique brainregion, identified by
itsstructure acronym (forexample, CA3, LP, VISp, etc.). Alist of CCFv3
structure acronyms along each track was compared to the physiologi-
cal features measured by each probe (for example, unit density, LFP
theta power; Extended Data Fig. 5f). The locations of major structural
boundaries were manually identified to align the CCFv3 labels with the
physiology data; the mostimportant features were the decrease in unit
density at the cortical surface and L6-hippocampus boundary, and
the decreaseintheta power at the hippocampus-thalamus boundary.
After the manual alignment procedure, each recording channel (and its
associated units) was assigned to aunique CCFv3 structure (Extended
Data Fig. 5g). White matter structures were not included; any units
mapped to awhite matter structure inherited the grey matter structure
label that was immediately ventral along the probe axis.

Identification of cortical visual area targets. To confirm the identity
of the cortical visual areas, images of the probes taken during the ex-
periment were compared to images of the brain surface vasculature
taken during the ISIsession. Vasculature patterns were used to overlay
the visual area map on an image of the brain surface with the probes
inserted. When donein custom software, key points were selected along
the vasculature on bothimages and a perspective transform (OpenCV)
was performed to warp the insertion image to the retinotopic map.
When done manually, the overlap of both images was done in Photo-
shop orlllustrator (Adobe Suite). In both cases, the probe entry points
were manually annotated. Finally, anarea was assigned to each probe.
Overall, successful targeting of the 6 target visual areas occurred at the
following rates: 89% for AM, 72% for PM, 98% for V1, 85% for LM, 79%
for ALand 90% for RL. A small subset of penetrations were mapped to
LI, MMA or MMP*, Penetration points that could not be unambigu-
ously associated with a particular visual area were classified as ‘VIS'. If
the cortical area label obtained via CCFv3 registration did not match
the areaidentified in the insertion image overlay, the insertion image
overlay took precedence.

Cortical depth and layer labels. For cortical units registered to the
CCFv3, we used ‘cortical streamlines’ to extract their relative depths
(Extended Data Fig. 10a; O = surface, 1= white matter). Each point in
the cortexis mappedtoaunique depth alongapath orthogonal to the
equi-potential fields between the brain surface and white matter (based
onthesolutionto Laplace’s equation in three dimensions). This method
yields normalized depth estimates even for regions of extreme cortical
curvature, such as the prefrontal cortex. Streamlines are preferable to
using distance along the probe axis, as they account for differencesin
insertion angle across areas.

Inaddition, CCFv3 coordinates were used asindices into the template
volume in order to extract layer labels for each cortical unit (L1, L2/3,
L4,L5,orL6). Therelative thickness of each layer, which can vary both
withinand across areas, is based on the average of the 1,675 individual
brains used to create the template volume.

Ex vivo imaging quality control. Quality control was performedona
probe-by-probe, rather than a mouse-by-mouse, basis. Some probes
were notvisible in the OPT images due to faint CM-Dil signal or recon-
struction artefacts caused by air bubbles in the tissue (Extended Data
Fig. 2f). In total, 284 out of 332 probes were mapped to the CCFv3.
Probes that failed the ex vivo imaging step were not excluded from
further analysis, but only included structure labels for channelsin the
cortex (with the bottom of the cortex identified on the basis of the drop
inunit density between the cortex and the hippocampus).

Spike sorting

Data pre-processing. Data was written to disk in aformat containing
the original 10-bit samples from each ADC. These files were backed
up to atape drive, then extracted to a new set of files that represent
eachsample asal6-bitinteger, scaled to account for the gain settings
on each channel. Separate data files were generated for the LFP band
and the spike band, along with additional files containing the times of
synchronization events. The extracted files consume approximately
36% more disk space than the originals.

Before spike sorting, the spike-band data passed through four steps:
offset removal, median subtraction, filtering and whitening. First, the
median value of each channel was subtracted to centre the signals
around zero. Next, the median across channels was subtracted to remove
common-mode noise. Although Neuropixels have been measured to have
aspike-band RMS noise levels of 5.1V insaline®, this cannot be achieved
in practice when recording in vivo. The signals become contaminated
by background noise in neural tissue; movement artefacts associated
with mouse locomotion, whisking and grooming; and electrical noise
introduced by the additional wiring required to support several probes
ononerig. Toremove noise sources that are shared across channels, the
medianwas calculated across channels that are sampled simultaneously,
leaving out adjacent (even/odd) channels that are probably measuring
the same spike waveforms, as well as reference channels that containno
signal. For each sample, the median value of channels n:24:384, where
n=[1,2,3,...,24], was calculated, and this value was subtracted from the
same set of channels. This method rejects high-frequency noise more
effectively than subtracting the median of all channels, at the cost of
leaving a residual of around 2 pV for large spikes, visible in the mean
waveforms. Given that this valueis well below the RMS noise level of the
Neuropixels probes under ideal conditions, it should not affect spike
sorting. The original data are overwritten with the median-subtracted
version, with the median value of each block of 16 channels saved sepa-
rately, to enable reconstruction of the original signal if necessary. The
median-subtracted data file is sent to the Kilosort2 MATLAB package
(https://github.com/mouseland/Kilosort2, commit 2fba667359dbd-
dbb0e52e67fa848f197e44cf5ef; 8 April 2019), which applies a150-Hz
high-pass filter, followed by whitening in blocks of 32 channels. The fil-
tered, whitened dataare saved to aseparatefile for the spike-sorting step.
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Kilosort2. Kilosort2 was used to identify spike times and assign spikes
toindividual units®. Traditional spike sorting techniques extract snip-
pets of the original signal and perform a clustering operation after
projecting these snippets into a lower-dimensional feature space. By
contrast, Kilosort2 attempts to model the complete dataset as asum of
spike ‘templates’. The shape and locations of each template is iteratively
refined until the data can be accurately reconstructed from a set of N
templates at M spike times, with each individual template scaled by an
amplitude, a. A critical feature of Kilosort2 is that it allows templates
to change their shape over time, to account for the motion of neurons
relative to the probe over the course of the experiment. Stabilizing
the brain using an agarose-filled plastic window has almost eliminated
probe motion associated with mice running, but slow drift of the probe
over approximately 3-hexperimentsis still observed. Kilosort2 is able
toaccurately track units as they move along the probe axis, eliminating
the need for the manual merging step that was required with the origi-
nal version of Kilosort?. The spike-sorting step runs in approximately
real time (around 3 h per session) using a dual-processor Intel 4-core,
2.6-GHz workstation with an NVIDIA GTX 1070 GPU.

Removing putative double-counted spikes. The Kilosort2 algo-
rithm will occasionally fit a template to the residual left behind after
another template has been subtracted from the original data, result-
ing in double-counted spikes. This can create the appearance of an
artificially high number of ISl violations for one unit or artificially
high zero-time-lag synchrony between nearby units. To eliminate the
possibility that this artificial synchrony will contaminate data analysis,
the outputs of Kilosort2 are post-processed to remove spikes with peak
times within 5 samples (0.16 ms) and peak waveforms within 5 chan-
nels (around 50 pm). This process removes more than 10 within-unit
overlapping spikes from 2.5 + 1.8% of units per session. It removes
2.05+0.65% of spikes in total, after accounting for between-unit over-
lapping spikes.

Removing units with artefactual waveforms. Kilosort2 generates
templates of a fixed length (2 ms) that matches the time course of
an extracellularly detected spike waveform. However, there are no
constraints on template shape, which means that the algorithm often
fits templates to voltage fluctuations with characteristics that could
not physically result from the current flow associated with an action
potential. The units associated with these templates are considered
‘noise’,and are automatically filtered out on the basis of three criteria:
spread (single channel, or more than 25 channels), shape (no peak and
trough, based on wavelet decomposition), or multiple spatial peaks
(waveforms are non-localized along the probe axis). The automated
algorithm removed 94% of noise units, or 26% of total units. A final
manualinspection step was used to remove an additional 2,140 noise
units across all experiments (Extended Data Fig. 3).

Spike-sorting quality control. All units not classified as noise are
packaged into Neurodata Without Borders (NWB) files for potential
further analysis. Because different analyses may require different qual-
ity thresholds for defining inclusion criteria, we calculate a variety of
metrics thatcanbe used tofilter units. These metrics are based on both
the physical characteristics of the units’ waveforms”, or their isolation
with respect to other units from the same recording (Extended Data
Fig.4a).

Firingrate: n/T, where n=number of spikes in the complete session
and T=total time of the recording session in seconds.

Presenceratio: The session was divided into 100 equal-sized blocks;
thepresenceratiois defined as the fraction of blocks thatinclude one
or more spikes from a particular unit. Units with a low presence ratio
are likely to have drifted out of the recording, or could not be tracked
by Kilosort2 for the duration of the experiment.

Maximum drift. To compute the maximum drift for one unit, the peak
channel was calculated from the top principal components of every
spike. Next, the peak channel values are binned in 51-s intervals, and
the median valueis calculated across all spikes in each bin (assuming
at least 10 spikes per bin). The maximum drift is defined as the dif-
ference between the maximum peak channel and the minimum peak
channel across all bins. The average maximum drift across all units is
used to identify sessions with a high amount of probe motion relative
to the brain.

Waveform amplitude: The difference (in microvolts) between the
peak and trough of the waveform on a single channel.

Waveform spread: Spatial extent (in pm) of channels in which the
waveform amplitude exceeds 12% of the peak amplitude.

Waveform duration: Difference (in ms) of the time of the waveform
peak and trough on the channel with maximum amplitude.

ISlviolations: This metric searches for refractory period violations
that indicate a unit contains spikes from multiple neurons. The ISI
violations metric represents the relative firing rate of contaminating
spikes. It is calculated by counting the number of violations of less
than 1.5 ms, dividing by the amount of time for potential violations
surrounding each spike, and normalizing by the overall spike rate. It
is always positive (or 0), but has no upper bound. See ref.”? for more
details.

Signal-to-noiseratio: After selecting 1,000 individual spike wave-
forms on the channel with maximum amplitude, the mean waveform
on that channel was subtracted. The signal-to-noise ratio (SNR)
is defined as the ratio between the waveform amplitude and 2x
the standard deviation of the residual waveforms’®. Because this
definition of SNR assumes that waveforms remain stable over time,
changes in a unit’s waveform as a result of probe motion will cause
this metric to be inaccurate. In addition, because it is only calcu-
lated for the peak channel, this metric does not necessarily reflect
the overall isolation quality of a unit when taking into account all
available information.

Isolation distance: The square of the Mahalanobis distance required
to find the same number of ‘other’ spikes as the total number of spikes
for the unitin principal component space™. Similarly to SNR, isolation
distance is not tolerant to electrode drift, and changes in waveform
shape over time canreduce theisolation distance calculated over the
entire session.

d’: Linear discriminant analysis is used to find the line of maximum
separationin principal componentspace. d’ indicates the separability
of the unit of interest from all other units. See ref. " for more infor-
mation. This metric is not tolerant to electrode drift, and changes in
waveform shape over time can reduce the value of @’ calculated over
the entire session.

Amplitude cutoff: This metric provides an approximation of a unit’s
false negative rate. First, a histogram of spike amplitudes is created,
and the height of the histogram at the minimum amplitude is extracted.
The percentage of spikes above the equivalent amplitude on the oppo-
site side of the histogram peak is then calculated. If the minimum
amplitude is equivalent to the histogram peak, the amplitude cut-
offis set to 0.5 (indicating a high likelihood that more than 50% of
spikes are missing). This metric assumes a symmetrical distribution
of amplitudes and no drift, so it will not necessarily reflect the true
false negative rate.

Nearest neighbours hit rate: For each spike belonging to the unit
of interest, the four nearest spikes in principal-component space are
identified. The ‘hit rate’ is defined as the fraction of these spikes that
belong to the unit of interest. This metric is based on the ‘isolation’
metric fromref.”. Again, electrode drift that alters waveform shape can
negatively affect this metric without necessarily changing theisolation
quality of a unit at any given time point.

Filtering of units on the basis of quality metrics and other criteriais
illustrated in Extended Data Fig. 4b.



Data analysis
Receptive field analysis. The receptive field for one unit is defined
as the 2D histogram of spike counts (quantified during the 250-ms
stimulus presention) at each of 81locations of the Gabor stimulus (9 x
9 pixels,10° separation between pixel centres, Extended DataFig. 6d).
A chi-squaretest forindependence was used to assess the presence
ofasignificant rzeceptive field. A chi-square test statistic was computed
x2=3", @ whereQ, = mil Yo R; jistheobserved averageresponse
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(R) of the unit over m presentations of the Gabor stimulus at location

. 33 R .

i,and E;= Z"]m “ is the expected (grand average) response per stimu-
i M

lus presentation. A Pvalue was then calculated for each unit by compar-

ing the test statistic against a null distribution of 1,000 test statistics,

each computed fromthe unit’s responses after shuffling the locations

across all presentations.

To compute the receptive field area and centre location, each
receptive field was first smoothed using a Gaussian filter (c=1.0). The
smoothed receptive field (RF) was thresholded at max(RF) - std(RF),
avalue that provided good agreement with the qualitative receptive
field boundaries. The receptive field centre location was calculated
onthebasis of the centre of mass of the largest contiguous areaabove
threshold, andits areawas equivalent to its pixel-wise area multiplied
by 100 degrees® (Extended Data Fig. 6€).

Cross-correlation analysis. We measured functional interactions
between pairs of units using CCGs**?*7¢, CCGs were calculated for pe-
riods of full-field drifting grating stimuli (2-s stimulus presentation
interleaved with1-s grey period; orientations=[0, 45,90, 135] degrees,
temporal frequency = 2 cycles per second, spatial frequency = 0.04
cycles per degree, contrast = 0.8) for units withmean firing rate greater
than 2 Hz between 50 ms and 500 ms after stimulus onset.
The CCGis defined as:

7 21{!1 27:1xl‘1(f)xi2(l'+ 7)

_M
CCG(1) = o0 Tk

where Mis the number of trials, N is the number of bins in the trial, x|
and x), are the spike trains of the two units on trial i, T is the time lag
relative to reference spikes, and A, and A, are the mean firing rates of
the two units. The CCGis essentially asliding dot product between two
spike trains. 8(7) is the triangular function which corrects for the over-
lap time bins caused by the sliding window. To correct for firing-rate
dependence, we normalized the CCG by the geometric mean spike
rate. Anindividually normalized CCGis computed separately for each
drifting grating orientation (75 repeats per orientation) then averaged
across 4 orientations to obtain the CCG for each pair of units.
Ajitter-correction method was used to remove stimulus-locked cor-
relations and slow temporal correlations from the original CCG.

CCGjitter_corrected = CCGoriginal - CCC'jittered

Thejitter-corrected CCG was created by subtracting the expected
value of CCGs produced from aresampled version of the original data-
set with spike times randomly perturbed (jittered) within the jitter
window?*?. The correction term (CCGjiyered is the true expected value
which reflects the average over all possible resamples of the original
dataset. CCGjjyereq is Normalized by the geometric mean rate before
subtracting from CCG,yiginy- The analytical formula used to create a
probability distribution of resampled spikes is provided in ref. . This
method disrupted the temporal correlation within the jitter window,
while maintaining the number of spikes in each jitter window and the
shape of the peristimulus time histogram (PSTH) averaged across tri-
als. For our measurement, a 25-ms jitter window was chosen on the

basis of previous studies®®*°. This jitter-correction method removes
both the stimulus-locked component of the response, as well as slow
fluctuations larger than the jitter window.

A sharp peak was deemed significant if the maximum of
jitter-corrected CCG amplitude within a £10 ms window had a magni-
tude larger than sevenfold of the standard deviation of the CCG flanks
(between +50-100 ms from zero). All subsequent analysis was based
on significant CCG sharp peaks.

A Wilcoxon rank-sum test was used to compare the distribution of
CCG peak offsets between neighbouring areas (defined by the anatomi-
calhierarchical score) and the distribution of CCG peak offset withinan
area. The significance test was performed within each mouse, and the
Pvalues were combined across 25 mice using Fisher’s method. V1-LM
vsV1-V1, P=0;LM-RLvS LM-LM, P=1.9 x1075;RL-ALvsRL-RL,P=2.4
x1075; AL-PM vs AL-AL, P=0.081; PM-AM vs PM-PM, P=3.2 x10™*,
All between-area distributions are significantly different from the
within-area distributions at the 5% confidence level, except for AL-PM.

Response latency. Response latency was calculated as the time to first
spike (TFS). TFS was estimated in each trial by looking for the time of
first spike 30 ms after stimulus onset. If no spike was detected within
250 ms after stimulus onset, that trial was not included. The overall
latency for each unit was defined as the median TFS across trials.

Asa control, we calculated TFS using the same procedure, but dur-
ing the 1-s pre-stimulus interval with a mean-luminance grey screen.
Under these conditions, TFS for individual areas was not correlated
with anatomical hierarchy score (Pearson’s r=0.57, P=0.14), but was
strongly negatively correlated with their baseline firing rates (Pearson’s
r=-0.98, P=0.00001; Extended Data Fig. 9b, c).

Modulation index. The stimulus modulation index (MI) reflects how
spiking activity of each unit is modulated by the temporal frequency
of the drifting grating stimulus***. It is defined as:

PS(f,.e) ~ (PS);

J(PSH_(PS)?

where PSindicates the power spectral density of the PSTH, and denotes
theaveraged power over all frequencies;f,,..cis the preferred temporal
frequency of the unit. This metric quantifies the difference between
spiking response power at each unit’s preferred stimulus frequency
(PS(}; o)) VErsusits averaged response power across frequencies ((PS);).
The power spectrum was computed using Welch’s method on the 10
ms-binned PSTH for each unit’s preferred condition. Ml values greater
than 3 correspond to strong modulation of spiking at the stimulus
frequency (indicative of simple-cell-like responses), whereas smaller
Ml values indicate less modulation by stimulus temporal frequency
(indicative of complex-cell-like responses)™.

Intrinsic timescale and response decay timescale. We calculated in-
trinsic timescale using amethod similar to that described previously®.
Wefirst extracted spike times for each unit during the1s pre-stimulus
period before the onset of each full-field flash, and binned them in
10-ms intervals. We then calculated the Pearson correlation between
spike counts at each of 100 possible offsets, tofill the upper triangle of
a100x100 correlation matrix. We averaged the correlations along the
diagonals of this matrix, and fit an exponential decay function to the
first 50 points (500 ms), with the decay timescale bounded between
1and 1,000 ms. Units were only included in the overall average if the
standard deviation of the estimated timescale parameter was less than
100, and atleast 100 spikes were used for fitting. The distribution of in-
trinsic timescales for each visual areais shown in Extended Data Fig. 9f.

We calculated the response decay timescale for each unit on the
basis of binned spike counts during the 250-ms presentation period of
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the full-field flash stimulus, with 10 ms temporal resolution. Using this
data, we calculated a2D autocorrelation matrix (scipy.signal.correlate)
and averaged this matrix across trials. An exponential decay function
was fit to the result, with the decay timescale bounded between 1and
1,000 ms. Unitswere onlyincludedin the overall average if the standard
deviation of the estimated timescale parameter was less than 20, and
at least 50 spikes were used for fitting. The distribution of response
decay timescales for each visual area is shown in Fig. 3k.

Directionality score. We quantified the relative proportion of posi-
tive and negative CCG time lags with a ‘directionality score’ (DS). DS
isdefined as:

Coositive ™ Cregative
DS = P TeETe

Cpositive+ Cnegative
where Cogirive Fepresents the number of functional connections (that
is, number of pairwise significant CCG sharp peaks) with positive time
lag from source to target area, and C,qg4ive represents the number of
functional connections with negative time lag. The DS is bounded
between -1and 1. A positive value indicates that temporally leading
connections predominate from source to target area, whereas anega-
tive value indicates that lagging connections are more common from
sourcetotargetarea. We calculated a DS for the peak offset distribution
between all pairs of areas, visualized as a matrix (Fig. 2e). Note that this
metric alone does not make any specific assumption of feedforward
or feedback connections, it only quantifies the relative number of
positive and negative time lag connections between two areas. To com-
plement this measurement, we also quantified the asymmetry of the
between-area time lags using the median of these distributions
(Extended Data Fig. 7c, d). However, the median of the CCG time lag
distributionin principle cannot reflect the shape of distribution, which
influences the relative hierarchy (see simulation in Extended Data
Fig.8e,f).

Analysis of neural responses during the change detection task. For
eachunit, spike density functions (SDFs) were calculated by convolving
spike times relative to eachimage change or theimage flash preceding
image change (‘pre-change’) with a causal exponential filter (decay time
constant =5ms). The firing rate during a baseline window 250 ms im-
mediately preceding image presentation was subtracted from each SDF.
Mean SDFs were then calculated by averaging across allimage change
or pre-change presentations. Units were included in further analysis
iftheirmean firing rate was greater than 0.1 spikes per second and the
peak of the mean SDF after image change was greater than 5 times the
standard deviation of the mean SDF during the baseline window.

Responses to image change and pre-change were calculated as the
mean baseline-subtracted firing rate during the response window.
We defined the change modulation index (Fig. 4f) for each unit as the
difference between the mean response to each image on change and
pre-change presentations divided by their sum, and took the average
of this value across all eight images. This analysis was repeated for
data collected during a ‘passive’ session during which the lick spout
was retracted and the exact sequence and timing of images viewed
during the behavioural task were replayed.

For comparison of decoder predictions and mouse behaviour
(Fig. 4g, h), we trained random forest classifiers with fivefold cross
validation to distinguish population activity associated with change
or pre-change image presentations. The input to the decoder for each
trial was avector of length neurons x time samples, formed by concat-
enating the SDFs of each neuron. Using these features, the decoder is
trained to predict whether each trial was a change or pre-change image
presentation. For each brain region and task session we used activ-
ity from subsamples of 20 neurons, beyond which decoder accuracy
improvements were minimal (Extended Data Fig. 90). The number of

subsamples varied depending on the number of neurons recorded
such that there was a greater than 99% chance that each neuron was
includedinatleast one subsample. Theresult for each experiment was
the median parameter value (for example, decoder accuracy) across
subsamples. The average output of the ensemble of random forest
classifiers (n=100) resultsina probability predicting whether agiven
trial was animage change. We compared these values to the response
ofthemouse on each trial (hit or miss) using a Pearson correlation, and
thenaveraged across experiments for eachregion to generate Fig. 4h.

Eye and pupil tracking. A single, universal eye tracking model was
trained in DeepLabCut”, a ResNET-50 based network, to recognize up
to 12 tracking points each around the perimeter of the eye, the pupil,
and the corneal reflection. A published numerical routine® was used
to fit ellipses to each set of tracking points. For each ellipse, the fol-
lowing parameters were calculated: centre coordinates, half-axes and
rotation angle. Fits were performed on each frame if there were at least
six tracked points and a confidence of /> 0.8 asreported by the output
of DeepLabCut. For frames in which there were fewer than 6 tracked
points above the confidence threshold, the ellipse parameters were
set to not-a-number (NaN).

Thetraining dataset contained two sources of hand-annotated data:
(1) Three frames from each of 40 randomly selected movies. On each
frame, eight points were annotated around the eye and pupil. The centre
of the corneal reflection was annotated with a single point. (2) 4,150
frames with the pupil and corneal reflections annotated with ellipses.

Across 50 mice with processed eye-tracking videos, we used the
gaze_mapping module of the AllenSDK to translate pupil positioninto
screen coordinates (in units of degrees). On average, 95% of gaze loca-
tions fell within 6.4 +2.1° of the mean, with a maximum of 13.6°.

Anatomical hierarchy analysis. A detailed description of the unsuper-
vised construction of adata-driven anatomical hierarchyis availablein
ref.?. Here we provide asummary of how the anatomical hierarchy of the
six visual cortical areas (V1,LM, AL, RL, PM and AM) and two thalamic
nuclei (LGN and LP) was constructed on the basis of the anatomical
connectivity. Specifically, the anatomical hierarchy was uncovered on
the basis of cortical lamination patterns of the structural connections
among the cortical and thalamic regions of interest, obtained from
Cre-dependent viral tracing experiments.

To classify laminar patterns of cortico-cortical (CC) and
thalamo-cortical (TC) connections and to assign a direction to each
cluster of laminar patterns, we used a large-scale dataset on cell
class-specific connectivity amongall 37 cortical areas and 24 thalamic
nucleidefined using 15 Cre driver transgenic lines (849 cortical and 81
thalamic experiments; 7,063 unique source-target-Cre line combina-
tions), availablein ref.>. For each transgenic line, the strength and layer
termination pattern of the connections were quantified on the basis
of relative layer density, the fraction of the total projection signal in
each layer scaled by the relative layer volumes in that target. For the
connections above a threshold (10°), unsupervised clustering of the
layer termination patterns was performed, yielding nine clusters of
distinct cortical layer termination patterns of CCand TC connections.
See figure 5a, b of ref.  for a schematic of the nine types of cortical
target lamination pattern.

Following the classification of the nine clusters of the laminar pat-
terns, an unsupervised method was used to simultaneously assign a
directiontoa cluster type and to construct a hierarchy by maximizing
the self-consistency of the obtained hierarchy. The mapping function
M. maps a type of CC connection cluster (CT‘_J_ €1{l1,...9}, where CTu
denotes the layer termination pattern of the connection fromareajto
areaifor Cre-line 7) to either feedforward (M- =1) or feedback (M. =-1)
type, thatis, M:{1,...,9}>{-1,1}. Similarly, the mapping function M. of
the thalamocortical layer terminationtypestoeither directionis defined
as M;:1,...,9}>{-1,1}. By constructing the hierarchy of all 37 cortical



areas and 24 thalamic nuclei, the optimal mapping function that max-
imizes the self-consistency measured by the global hierarchy score was
found® (refer to equations 5and 10 of ref.> to see how the global hierar-
chy score was defined for CC and TC connections, respectively.). Spe-
cifically, the optimal mapping for CC connections assigns connections
of cluster 2, 6 and 9 to one direction (feedback) and 1, 3,4, 5,7and 8 to
the opposite direction (feedforward). For TC connections, the most
self-consistent hierarchy that maximizes the global hierarchy score is
obtained when connections of cluster 2 and 6 correspond to feedback
and the rest to feedforward patterns (figure 6a of ref. 3).

With these mapping functions M. and My obtained from the con-
struction of the all-area hierarchy (figure 6a of ref. ), the hierarchical
organization of thesix visual cortical areas (V1, LM, AL, RL, PM and AM)
andthe two thalamic nuclei (LGN and LP) was constructed using only the
connectionsamong these eight regions. We first uncovered the cortical
hierarchy using the intra-cortical connections among the six cortical
areas:V1,LM, AL, RL, PM, and AM (240 unique ‘source-target-Cre line’
combinations). The initial hierarchical position of a cortical area is
defined as:

HP= %((MCC(CTM_) -conf(T)); = Mcc(Cr, ) - conf(T)))), o)

where thefirst term describes the average direction of connections to
areai, and thus represents the hierarchical position of the areaas a
target. The second term, on the other hand, represents the average
direction of connections fromareai, depicting the hierarchical position
of the area as a source. To account for the Cre-line-specific bias, the
Cre-dependent confidence measure, conf(7T)=1- |<Mcc(Cn Myl is
included. Theinitial hierarchy score (H?) of each areaithenis iterated
using a two-step iterative scheme until the fixed point is reached:

HEV2 = D (HT 4 MG )y~ CH MG o) @)

1 1
Hr=H; 2—<Hf. 2> 3)
j

where nrefers toiterative steps.

After hierarchical positions of cortical areas are found based on CC
connections, the hierarchical positions of the LGN and LP relative to
the cortical areas were computed by including TC connections fromthe
LGN and LP tothesix visual cortical areas (25 unique ‘source-target-Cre
line’ combinations). Because thalamic areas are always the source in
TC connections, the initial hierarchy score of each thalamic areaiis
defined by the average direction of connections from the area:

min(Ng - N
HY=~ <MTC(CT,,i) - 7,\,; +”Nﬂ)‘b) > (4)

The parameters N and N, refer to the numbers of feedforward and
feedback thalamocortical connections, respectively. Once the initial
positions of the thalamic areas in the hierarchy are obtained using
equation (4), hierarchy scores of thalamic and cortical areas are iterated
until the fixed points are reached, using a full mapping function M, 1c
that combines M-cand M., as done with the cortical hierarchy based
on CC connections only (equations (2) and (3)).

To test the significance of the hierarchy levels of these areas, we
generated 100 sampled connectivity data of the same size via boot-
strapping, and computed the hierarchy scores of the eight regions
using the bootstrapped connectivity data. We performed Wilcoxon
paired signed rank-sum tests on these scores, showing that hierarchy
levels of LM and RL cannot be meaningfully distinguished (P=0.08) but
therest of theareas are at significantly distinct hierarchical positions,
with the 5% confidence level.

Network model simulation. To quantitatively evaluate the degree of
‘hierarchy’ of our measured functional network and to compare it to
parallel network architectures, we performed a series of model simula-
tions. We examined how the functional connectivity matrix would
change with different network structures and calculated a ‘total hier-
archy score’ (THS) to reflect the degree of hierarchy. The modelis a
simple graph model thatassumes each areaisanode, and the connec-
tion strength and directionality between nodes (feedforward and
feedback connections) are defined by a simulated distribution of CCG
peak offsets between the two areas. The peak offset distributions are
approximated by Gaussian distributions, because most of the distribu-
tions of between area peak offsets are Gaussian-like (normality test
with scipy.stats.normaltest; with P>0.05). The distribution of offsets
intheactual datahas amean of 1.1+ 0.4 ms (n=>5 pairs of neighbouring
areas) and a standard deviation of 3.7 + 0.2 ms (n =15 pairs of areas;
Extended Data Fig. 7a). Inspired by the data, we simulated peak offset
distributions between neighbouring levels using Gaussian distributions
witho=4msandpu=1ms (u=L; - L;between hierarchical levelsiand,).
The mean and standard deviation of the Gaussians define the direc-
tionality score (DS), which reflects the relative proportion of measured
feedforward connections between two areas. When the Gaussian has
amean of 0, the DS is O, which means the two nodes reside at the same
level of the graph, while a DS of 1indicates unidirectional information
flow from the lower to the higher node.

In Extended Data Fig. 8a, we first quantified DS on the basis of the
peak offset distributions from the experimental data. The left panel
showsthe distribution of peak offset from V1to LM, between the cut-off
times of £10 ms that we impose to minimize multi-synaptic connec-
tions. In the middle is the functional connectivity matrix with the DS
between areas (values range from —-1to 1). On the right is the mean of
DS from each source area to all target areas. The mean DS gradually
decreased along the anatomical hierarchy. The maximum difference of
thistrajectory (here between Vland AM)is defined as the total hierarchy
score (THS) of the network, which is 0.89 for the measured functional
network in our data. For our simulations, we first tested a fully recur-
rent networkinwhich allnodes have unbiased reciprocal connections
(Extended Data Fig. 8b). This network has a DS connectivity matrix with
all zeroes and a THS of 0. Then, we simulated a two-level, one-to-all
network that models parallel feedforward projections from V1to all
otherareas (Extended Data Fig. 8c), but withall other areas recurrently
connectedto each otherinanunbiased way. This network generated a
THS of 0.15. Next, we simulated a three-level network, assuming V1is at
the lowest level, RL, LM and AL are at the second level, AM and PM are
atthetop level (Extended DataFig. 8d). This network generated a THS
of 0.38. Next, we simulated aladder hierarchical network, inwhich the
mean of peak offset distribution between two areas is determined by
their position difference in the hierarchy (L;-L;) (such that the mean
time lag between neighbouring levels is1 ms). We first tested a network
with parameters constrained by our data (=4 msand u=L,-L;ms)
(Extended DataFig. 8e). The resulting DS matrix showed a gradient very
similar to the real data, with a THS equal to 0.88. To push the network
to an extreme, we tested a strongly feedforward network by defin-
ing a narrow Gaussian (0 =1) to produce fewer feedback connections
(Extended Data Fig. 8f). We found the DS matrix was more saturated
and the THS valueis 1.54. In theory, the maximum THS is 2. Therefore,
our measured network is more hierarchical than a‘one-to-all’ network
and less hierarchical thana purely feedforward, hierarchical network.

Other statistical methods. To quantify the correlation between the
mean value of each metric and the anatomical hierarchy score, both
the Pearson correlation coefficient (scipy.stats.pearsonr) and Spear-
man’srank correlation coefficient (scipy.stats.spearmanr) were used.

To test for significant differences between pairs of areas, a Wil-
coxon rank-sum statistic was used (scipy.stats.ranksum), with each
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unit considered anindependent sample. Correction for multiple com-
parisons was performed using the Benjamini-Hochberg false discovery
rate (statsmodels.stats.multitest.multipletests).

Data processing pipeline

Data for each session were uploaded to the Allen Institute Laboratory
Information Management System (LIMS). Each dataset was run through
the same series of processing steps using a set of project-specific work-
flows. Out of 61 sessions entering the processing pipeline, 58 resulted
in successful NWB file generation. The three processing failures were
due to mismatches in session identifiers or expected file structures
that prevented the workflow from completing.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

The data from all 58 passive viewing experiments used to generate
main text Figs. 1-3 is available for download in Neurodata Without
Borders (NWB) format via the AllenSDK. Example Jupyter Notebooks
for accessing the data can be found at https://allensdk.readthedocs.
io/en/latest/visual_coding_neuropixels.html.

The Neurodata Without Borders files are also available on the DANDI
Archive (https://gui.dandiarchive.org/#/dandiset/000021; https://gui.
dandiarchive.org/#/dandiset/000022)) and as an AWS public dataset
(https://registry.opendata.aws/allen-brain-observatory/).

The metricstable used to generate Fig. 4e-h (active behaviour experi-
ments) isavailableinthe GitHub repository for this manuscript (https://
github.com/AllenInstitute/neuropixels_platform_paper).

Code availability

Code for the following purposes are available from these reposito-
ries: generating manuscript figures, https://github.com/AllenIn-
stitute/neuropixels_platform_paper; data pre-processing and unit
metrics, https://github.com/Alleninstitute/ecephys_spike_sort-
ing; spike-sorting, https://github.com/mouseland/Kilosort2; OPT
post-processing, https://github.com/AllenInstitute/AIBSOPT; calcu-
lating stimulus metrics, https://github.com/AllenInstitute/AllenSDK;
dataacquisition, https://github.com/open-ephys/plugin-GUI, https://
github.com/open-ephys-plugins/neuropixels-3a, https://github.com/
open-ephys-plugins/neuropixels-PXI.

The following open-source software was used: NumPy®!, SciPy®?,
IPython®, Matplotlib®, Pandas®, xarray®, scikit-learn®, VTK®, Dee-
pLabCut’®, statsmodels®, allenCCF, tifffile (https://pypi.org/pro-
ject/tifffile/), Jupyter (https://jupyter.org/), pynwb (https://pynwb.
readthedocs.io/en/stable/).
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Extended DataFig. 8| Simulation of functional connectivity profiles for
different network structures. a, Directionality score (DS) and total hierarchy
score calculated fromactual data. Left, an example distribution of peak offsets
between V1 (source)and LM (target); middle, DS matrix for all area combinations;
right, mean DS foreachsource areato all target areas, which gradually
decreases alongthe hierarchy. The maximum difference of the mean DS across
areasrepresentsthetotal hierarchy score for the real network. b-f, Simulations
based ondifferent hypothetical network structures. Because the standard
deviation of peak offset distributionin our measured CCG time lag distribution
is3.7+0.2ms and the median CCG time lag of neighbouring areasis1.1+ 0.4 ms,
we simulated Gaussian distributions of the model peak offsets with =4 and
p=1forneighbouringhierarchicallevels (u=L; - L;between hierarchical levels

iandj).See Methods for additional details of this simulation. b, A fully
recurrent network where all nodes (areas) are at the same hierarchical level and
have unbiasedreciprocal connections (u =0).c, Atwo-level, one-to-all network
that models parallel feedforward projections from V1, with all other areas
recurrently connected with one anotherinanunbiased way.d, A three-level
network, assuming V1at the lowestlevel, RL,LM and AL at the second level, AM
and PMat thetoplevel. e, Asix-level hierarchical network witheach areaata
distinct hierarchical level. Network parameters were constrained by real data
(0=4and u=1forneighbouringhierarchicallevels,and i =L; - L;betweenany
hierarchicallevelsiandj).f, Asix-level hierarchical network withanarrow
distribution of peak offsets (¢=1) that simulates a paucity of feedback
connections.
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Extended DataFig. 9 |Statistics and additional analysis of hierarchy

Anatomical hierarchy score

measures. a, Pvalues for pairwise comparisons of time to first spike between

areas (two-sided Wilcoxon rank-sum test with Benjamini-Hochberg false
discovery rate correction). b, Comparison between time-to-first-spike

measured inresponse to the onset of the flash stimulus (‘flash’) versus during

theinter-stimulusinterval which corresponds to spontaneous firing

(‘spontaneous’). The colour schemeisthesameasinFig.4; errorbarsrepresent
mean = 95% confidenceintervals; n=15,713 units from 58 mice. ¢, Relationship

between time-to-first spike and mean firing rate for agivenarea, eitherin

responseto the flash stimulus, or during the inter-trial interval (‘spontaneous’).

d, Pvalues for pairwise comparisons of receptive field size between areas.

Colourscaleisthesameasina.e, Pvalues for pairwise comparisons of

modulationindex between area. Colourscaleisthesameasina.f, Distribution

ofiintrinsic timescale across unitsineachof 8 areas. g, Correlation between
meanintrinsic timescale and anatomical hierarchy score. The absence of a

significant correlationis inconsistent with the findings fromref.**, inwhichit
was shown thatintrinsic timescale increases with hierarchical level in primates.

This discrepancy may stem from differences between mouse and primate

Numggr of cells Anatomical hierarchy score
neocortex, or the fact that the areas we haverecorded do not span the full range
ofthe mouse cortical hierarchy. Inaddition, itis known that standard
exponential fitting procedures produce biased and unreliable timescale
estimates, which may account for the null result we observed®’. h, P-values for
pairwise comparisons of response decay timescales between areas. Colour
scaleisthesameasina.i, Distribution of overall firing rates for all unitsin each
area.j, Correlation between mean firing rate and anatomical hierarchy score.
k, Relationship between change modulationindex and anatomical hierarchy
score, grouped by hit and miss trials. I, Relationship between pre-change
response and anatomical hierarchy score, grouped by active and passive trials.
m, Relationship between change response and anatomical hierarchy score,
grouped by active and passive trials. n, Relationship between baseline firing
rateand anatomical hierarchy score, grouped by active and passive trials.
0,Decoderaccuracy asafunction of number of neurons used for decoding,
averaged acrossall brainregions and behaviour sessions. p, Decoder accuracy
foreachbrainregion (meants.e.m., averaged across sessions) isnot correlated
withtheanatomical hierarchy score. r,, Pearson correlation coefficient;

rs, Spearman’s rank correlation coefficient.
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Extended DataFig.10|See next page for caption.




Extended DataFig.10|Layer-wise analysis. a, Distribution of unit depths by
area.0=surface,1=white matter. Normalized depthis measured alonglines
normalto the cortical surface (‘cortical streamlines’), rather than distance
alongthe probe. b, Time-to-first-spike, receptive field area, modulationindex,
andresponse decay timescale analysed separately for each cortical layer.
Coloursarethesameasthose used inFig. 4. Error bars represent mean + 95%
bootstrap confidenceintervals. On average, in comparison to deep layers
(5and 6), superficial layers (2/3 and 4) had an earlier time to first spike

(2.59 ms difference, P=2.7x10™, two-sided Wilcoxon rank-sum test),

smaller receptive fields (109° difference, P=1.1x10"%*), higher modulation
index (0.09 Ml difference, P=5.0 x107?%), and faster response decay timescale

(6.6 msdifference, P=3.8 x107>%). The presence of slightly earlier spikesin L2/3
thanL4 of V1is probably due to the existence of direct connections from LGN to
L2/3 of thisarea®. r,, Pearson correlation coefficient; rs, Spearman’s rank
correlation coefficient. ¢, Average number of sharp peak pairs foreach area
and layer combination. Unitsineach areaare bi-partitioned into superficial
(layers 2-4) and deep layers (layers 5-6).d, Directionality score (averaged
across mice) asanindicator of feedforward and feedback asymmetry.
Areasordered by hierarchy and layers arranged from superficial to deep.

e, Directionality score based on average within-layer and between-layer
distributionsind; superficial layers tend to drive deep layers within a cortical
area.
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Software and code

Policy information about availability of computer code

Data collection  Electrophysiological recordings were carried out with the Open Ephys GUI (https://github.com/open-ephys/plugin-GUI) using the Neuropixels
3a (https://github.com/open-ephys-plugins/neuropixels-3a) or Neuropixels PX| (https://github.com/open-ephys-plugins/neuropixels-PXI)
plugins.

Data analysis Spike sorting was performed with Kilosort2 (https://github.com/mouseland/Kilosort2), using the ecephys_spike_sorting package (https://
github.com/Alleninstitute/ecephys_spike_sorting) for pre- and post-processing. Post-processing of optical projection tomography data and
Common Coordinate Framework registration were performed using code available in the AIBSOPT repository (https://github.com/
AllenInstitute/AIBSOPT).

Python code for generating manuscript figures is available at https://github.com/Alleninstitute/neuropixels_platform_paper. This code relies
heavily on the AllenSDK v2.2 (https://github.com/Alleninstitute/AllenSDK), pynwb v1.4.0, NumPy v1.18.5, SciPy v1.5.2, Pandas v0.25.3,
Matplotlib v3.3.2, xarray v0.15.1, and scikit-learn v0.23.2.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

The data from all 58 passive viewing experiments used to generate main text Figures 1 through 3 is available for download in Neurodata Without Borders format via
the AllenSDK. Example Jupyter Notebooks for accessing the data can be found at https://allensdk.readthedocs.io/en/latest/visual_coding_neuropixels.html.

The Neurodata Without Borders files are also available on the DANDI Archive (https://gui.dandiarchive.org/#/dandiset/000021/draft, https://gui.dandiarchive.org/
#/dandiset/000022/draft) and as part of an AWS public dataset (https://registry.opendata.aws/allen-brain-observatory/).

The metrics table used to generate Fig. 4e—h (active behavior experiments) is available on GitHub: https://github.com/Alleninstitute/neuropixels_platform_paper
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Our passive viewing study represents a broad survey of visually evoked neural activity in cortical and thalamic areas of the mouse. The study
was designed to record from cortical and thalamic visual areas with similar sample size to a previous large-scale study using 2-photon imaging
(de Vries et al. 2020). The dataset is the largest of its kind, with 99,180 units from n = 58 mice and 2500-8500 units from each visual area we
analyzed. Such dense sampling is sufficient to reliably estimate the distribution of functional metrics within each area (Fig. 3), and to find
sufficient cross-correlogram peaks to perform an analysis of functional connectivity (Fig. 2).

The number of active behavior experiments was determined to provide at least 250 units from n = 3 mice for all 8 visual areas under
investigation (Fig. 4).

Data exclusions | 18 of 105 mice were excluded from the data generation pipeline for the following reasons: brain health following cranial window implant,
non-stereotypical visual areas maps, artifacts on the brain surface, stress responses during habituation, or bleeding following cranial window

removal.

26 of 87 recording sessions were excluded from data packaging for the following reasons: eye foam, bleeding following probe insertion, probe
drift, electrical noise, dropped stimulus frames, failed probe insertion, or missing data files.

3 of 61 successful recording sessions were excluded from analysis due to failures in the automated data packaging pipeline.
All exclusion criteria were pre-established.

Replication Our experiments were collected under highly standardized experimental conditions with many quality control measures in place to ensure
reproducibility of the experiments. These quality control pipelines are described in Supplementary Figures 1-4.

Randomization  The order of stimulus presentation for both the passive viewing and active behavior experiments was randomized for each session.

Blinding Investigators were not blinded to mouse genotype during the experiment, but effects of genotype were not analyzed in this study.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
Antibodies g |:| ChlIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
Human research participants
Clinical data

Dual use research of concern
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Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Mus musculus

Strains:

Wild-type C57BL/6) mice were purchased from Jackson Laboratories at age P25-50. For experiments involving opto-tagging of
inhibitory cells, Pvalb-IRES-Cre, Vip-IRES-Cre, and Sst-IRES-Cre mice were bred in-house and crossed with an Ai32 channelrhodopsin
reporter line. Pvalb-IRES-Cre;Ai32 breeding sets (pairs and trios) consisted of heterozygous Pvalb-IRES-Cre mice crossed with either
heterozygous or homozygous Ai32(RCL-ChR2(H134R)_EYFP) mice. Pvalb-IRES-Cre is expressed in the male germline. To avoid
germline deletion of the stop codon in the LoxP-STOP-LoxP cassette, Pvalb-IRES-Cre;Ai32 mice were not used as breeders. Sst-IRES-
Cre;Ai32 breeding sets (pairs and trios) consisted of heterozygous Sst-IRES-Cre mice crossed with either heterozygous or homozygous
Ai32(RCL-ChR2(H134R)_EYFP) mice. Vip-IRES-Cre;Ai32 breeding sets (pairs and trios) consisted of heterozygous Vip-IRES-Cre mice
crossed with either heterozygous or homozygous Ai32(RCL-ChR2(H134R)_EYFP) mice. Cre+ cells from Ai32 lines are highly
photosensitive, due to expression of Channelrhodopsin-2.

Experiments analyzed in Figures 1-3 (passive viewing):
Sex: n = 45 male mice, n = 13 female mice
Age: range from 91 to 142 days, median = 119 days

Experiments analyzed in Figure 4 (active behavior):
Sex: n = 6 male mice, n = 6 female mice

Age: range from 182 to 331 days, median = 255 days

All mice were single-housed and maintained on a reverse 12-hour light cycle in a shared facility with room temperatures between 68
and 722 F and humidity between 30 and 70%.

Wild animals No wild animals were used in this study.
Field-collected samples  No field-collected samples were used in this study.

Ethics oversight Mice were maintained in the Allen Institute for Brain Science animal facility and used in accordance with protocols approved by the
Allen Institute’s Institutional Animal Care and Use Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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