
86 | Nature | Vol 592 | 1 April 2021

Article

Survey of spiking in the mouse visual system 
reveals functional hierarchy
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The anatomy of the mammalian visual system, from the retina to the neocortex, is 
organized hierarchically1. However, direct observation of cellular-level functional 
interactions across this hierarchy is lacking due to the challenge of simultaneously 
recording activity across numerous regions. Here we describe a large, open dataset—
part of the Allen Brain Observatory2—that surveys spiking from tens of thousands of 
units in six cortical and two thalamic regions in the brains of mice responding to a 
battery of visual stimuli. Using cross-correlation analysis, we reveal that the 
organization of inter-area functional connectivity during visual stimulation mirrors 
the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas3. We find that 
four classical hierarchical measures—response latency, receptive-field size, 
phase-locking to drifting gratings and response decay timescale—are all correlated 
with the hierarchy. Moreover, recordings obtained during a visual task reveal that the 
correlation between neural activity and behavioural choice also increases along the 
hierarchy. Our study provides a foundation for understanding coding and signal 
propagation across hierarchically organized cortical and thalamic visual areas.

Mammalian vision is the most widely studied sensory modality. The 
investigation of its cellular substrate has yielded insights into how the 
stream of photons that impinge onto the retina leads to conscious per-
ception and visuomotor behaviours. However, much of our knowledge 
of physiology at the cellular level derives from small-scale studies that 
are subject to substantial uncontrolled variation, uneven coverage of 
neurons and selective use of stimuli. The ability to validate models 
of visual function has been hampered by the absence of large-scale, 
standardized and open in vivo physiology datasets4,5. To address this 
shortcoming, we previously developed a two-photon optical physi-
ological pipeline to systematically survey visual responses in genetically 
defined cell populations2. However, this methodology lacks the ability 

to record simultaneously with high temporal resolution across many 
cortical and subcortical structures. We therefore built a complementary 
pipeline that uses Neuropixels probes6 to measure spiking activity in 
six cortical visual areas as well as two visual thalamic nuclei: the lateral 
geniculate nucleus (LGN) and the lateral posterior nucleus (LP), also 
known as the visual pulvinar.

The concept of hierarchy has informed ideas about the architec-
ture of the mammalian visual system for more than 50 years7, and has 
inspired powerful multi-layered computational networks8–10. The visual 
hierarchy has been investigated most extensively in the macaque, from 
the LGN and the primary visual cortex (V1) into frontal eye fields and 
beyond1,11–16. The existence of such a hierarchy in the mouse, with its far 
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smaller brain and densely connected cortical network17, is less clear18–20. 
Yet, given the utility of the mouse model, characterizing the presence 
and extent of such a hierarchy is important.

By analysing anterograde viral tracing with Cre-dependent 
adeno-associated viruses (AAV) from 1,256 mice, anatomical rules were 
previously derived to describe projections into and out of 37 cortical 

and 24 thalamic regions via their layer-specific axonal termination pat-
terns3. An optimization algorithm assigned a hierarchy score to every 
region to reveal a hierarchical ordering of visual areas, with the LGN at 
the bottom and the higher-order cortical region, antero-medial area 
(AM), at the top. However, the importance of this anatomical hierar-
chy is unclear. Functional activity is dynamic and context-dependent,  
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Fig. 1 | A standardized pipeline for electrophysiology in the mouse visual 
system. a, Data collection pipeline, with the average age of mice (in days) 
indicated below. b, Schematic of probe insertion trajectories through visual 
cortical (V1, LM, AL, RL, AM, PM) and thalamic (LGN, LP) areas. c, Example raster 
plot of 405 simultaneously recorded units from 8 visual areas during drifting 
grating stimuli (15 Hz, 2 Hz or 4 Hz), with hippocampal (HPC) local field 
potential, mouse running speed and pupil diameter shown below. d, Raster 
plots of spike times for different drifting grating stimuli from an exemplar V1 
unit. Single-trial responses are represented by a star plot (right), in which 
stimulus orientation and temporal frequency are indicated by angle and radius, 

respectively, and firing rate is indicated by the intensity of the pink blob.  
e, Raster plots and peri-stimulus time histograms of the full-field flash 
stimulus, for the same unit as in d. f, Raster plot of spike times for 81 conditions 
of the Gabor stimulus for the same unit. Summing the spike counts across 45 
trials at each location produces a spatial receptive field, shown on the right. 
Spike count is quantified over a 250-ms window. g, Mean fraction of units with 
significant receptive field across eight visual areas, with hippocampus 
included as a control (see Methods). Data are mean ± s.d., and dots show the 
results of individual sessions.
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so it is unknown how well the flow of spikes follows the anatomical 
hierarchy, especially given the presence of all-to-all connectivity17,19 and 
branching connections21. Therefore, we sought to determine whether 
the anatomical hierarchy is reflected in the spiking activity of these 
visual areas, linking hierarchical structure to function.

A survey of visually evoked spiking
We recorded spiking activity across visual cortical and thalamic struc-
tures in awake, head-fixed mice viewing diverse visual stimuli, using 
Neuropixels silicon probes6 to simultaneously record from hundreds 
of neurons with high spatial and temporal resolution22–24. This dataset 
of about 100,000 units complements our previously released survey 
that used optical recordings of calcium-evoked fluorescent activity in 
60,000 cortical neurons2 (see ref. 25 for a comparison of the results from 
the imaging and electrophysiology datasets). Both datasets are part of 
the Allen Brain Observatory—a pipeline of animal husbandry, surgical 
procedures, equipment and standard operating procedures, coupled 
to strict activity- and operator-independent quality-control measures. 
All physiological data that passes quality control is made freely and 
publicly available via the AllenSDK (https://allensdk.readthedocs.io), 
the DANDI Archive (https://gui.dandiarchive.org) and the AWS Registry 
of Open Data (https://registry.opendata.aws/allen-brain-observatory/).

Each mouse in this study proceeded through an identical series of 
steps, carried out by highly trained staff according to a set of stand-
ard operating procedures (Fig. 1a, Extended Data Fig. 1a–f; see also 
http://help.brain-map.org/display/observatory/Documentation). We 
used cortical area maps derived from intrinsic signal imaging of every 
mouse to simultaneously target up to six Neuropixels probes to V1 
and five higher-order visual cortical areas (latero-medial area (LM), 
anterol-ateral area (AL), rostro-lateral area (RL), postero-medial area 
(PM) and AM) (Extended Data Fig. 1g–i). The probes were inserted up 
to 3.5 mm into the brain to measure responses in the LGN and the LP 
thalamic areas (Fig. 1b); the hippocampus and other areas traversed by 
the silicon probes were likewise recorded. This configuration enabled 
us to sample the mouse visual system with unprecedented coverage, 
creating cellular-resolution activity maps across up to eight cortical 
and thalamic visual areas at once (Fig. 1c).

We implemented quality-control procedures to ensure consist-
ent data (Methods, Extended Data Fig. 2), reducing the number of 
experiments analysed and presented here from 87 to 58. Extracellu-
larly recorded units were sorted via the Kilosort2 algorithm24,26 and 
further subjected to quality control (Extended Data Figs. 3, 4). Units 
were mapped to structures in the Common Coordinate Framework 
Version 3, a 3D anatomical atlas27, by imaging fluorescent probe tracks 
with optical projection tomography (Extended Data Fig. 5). Overall, we 
recorded 682 ± 144 units per experiment, 119 ± 48 units per probe and 
56 ± 30 units per visual area (Extended Data Fig. 1j), sampling 6.1 ± 1.1 
visual areas per experiment (Extended Data Fig. 1k).

During each recording session, mice passively viewed a battery of 
natural and artificial stimuli (Extended Data Fig. 6a–c). Here we focus on 
a subset of these—including drifting gratings (Fig. 1d), full-field flashes 
(Fig. 1e) and local Gabor patches (Fig. 1f)—to characterize aspects of 
hierarchical processing. Units recorded in all eight cortical and tha-
lamic visual areas were highly visually responsive, with 60% displaying 
significant spatial receptive fields within the boundaries of the moni-
tor used for stimulus presentation (Fig. 1g, Extended Data Fig. 6d, e; 
categorical χ2 test, P < 0.01). As a control, we searched for significant 
receptive fields in simultaneously recorded hippocampal regions (CA1, 
CA3 and dentate gyrus), and found them in only 1.4% of units.

A functional hierarchy of visual areas
A previous anatomical study3 assigned a hierarchy score to each corti-
cal and thalamic region in the mouse, derived using an optimization 

algorithm that considers the set of distinct axonal termination patterns 
of connectivity between areas (deeming each as either a feedforward 
or a feedback connection), and found the most self-consistent network 
architecture out of the set of hierarchical area orderings (Fig. 2a). The 
LGN sits at the bottom of the hierarchy, followed by its major target 
structure, V1; areas LM, RL, LP and AL reside at intermediate levels, 
and areas PM and AM occupy the top level of the areas we studied here. 
The higher-order thalamic area, LP, is interconnected with all visual 
cortical regions, and resides at an intermediate hierarchical location.

During strong bottom-up, visual stimulation, we anticipated that 
activity would propagate up this anatomical hierarchy. The direction-
ality of this bottom-up wave of activity should be visible in pairwise 
leader–follower relationships between connected areas. To test for 
such a functional hierarchy, we evaluated the directed functional 
connectivity using spike cross-correlograms (CCG) between units in 
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different anatomical hierarchy scores, except for RL and LM (Wilcoxon 
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is shown by the red line. e, Directionality scores calculated from peak offset 
distributions across 25 mice for each pair of cortical areas. Statistical testing 
(two-sided Wilcoxon rank-sum test) revealed that the peak offset distributions 
of neighbouring areas were significantly different from within-area 
distributions, except for AL–PM (P = 0.08). f, Correlation between 
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different areas28–30 during visual stimulation with drifting gratings. 
For each pair of recorded units, we examined whether a functional 
connection was present in the CCG, defined as a ‘sharp peak’ with a 
short latency (within ± 10 ms) and a large peak amplitude (more than 
7-fold greater than the CCG flank standard deviation; see Methods 
for details) in the jitter-corrected CCGs (Fig. 2c). Jitter correction 
removes slow timescale correlations larger than the jitter window 
(25 ms), yielding 16,119 pairs of units out of 2,089,890 possible pairs 
within the cortex (Extended Data Fig. 7b; 0.96% ± 0.13% per mouse, 
n = 25 mice). These fast-timescale interactions sample the functional 
hierarchy between areas (see Fig. 2c for an example pair). If spikes in 
the source area lead spikes in the target area, the distribution of peak 
offsets will deviate in the positive direction from 0. For example, the 
peak offset distribution between V1 and LM showed a significant posi-
tive delay compared to the V1–V1 distribution (Fig. 2d; P = 2.6 × 10−8, 
two-sided Wilcoxon rank-sum test), indicating that V1 neurons—on 
average—lead LM neurons during strong visual drive, and thus are 
lower in the functional hierarchy.

We computed the distribution of CCG sharp peak time lags for all 
functionally connected units across each pair of cortical areas in each 

mouse, and combined the median of peak offset distributions across 
mice (Extended Data Fig. 7c, d; see Extended Data Fig. 7a for complete 
peak offset distributions between all areas across all mice). On average, 
V1 units lead the activity of units in other areas (Extended Data Fig. 7c, 
left column); by contrast, area AM follows other regions, indicating 
this area resides at the uppermost levels of the hierarchy (Extended 
Data Fig. 7c, right column).

To assess leader–follower relationships between areas, we defined a 
directionality score that quantifies the relative number of positive and 
negative time lag connections between any two areas (see Methods). 
The matrix of pairwise directionality scores (Fig. 2e) between areas 
was very similar to the matrix of anatomical hierarchy score differ-
ences (Fig. 2b) (Pearson’s r = 0.74, P = 1 × 10−4; see also Extended Data 
Fig. 7c). The spatial layout of areas could not account for this corre-
lation in terms of average physical distance (Extended Data Fig. 7e). 
Furthermore, this organization was absent during spontaneous activity 
(Extended Data Fig. 7f, g), suggesting that the functional hierarchy 
we identified reflects population activity driven by bottom-up input. 
Network simulations of simple architectures ranging from completely 
parallel to purely hierarchical organizations suggest that our empirical 

–0.5 0.0 0.5

60

65

70

Ti
m

e 
to

 �
rs

t 
sp

ik
e 

(m
s)

–0.5 0.0 0.5

500

600

700

800

900

–0.5 0.0 0.5

−0.2

0

0.2

0.4

rP = 0.95; PP = 0.00025
rS = 0.88; PS = 0.00385

rP = 0.97; PP = 8.3 × 10–5

rS = 0.90; PS = 0.002

rP = –0.89; PP = 0.003
rS = –0.93; PS = 0.0008

rP = 0.86; PP = 0.007
rS = 0.88; PS = 0.004

Anatomical hierarchy scoreAnatomical hierarchy scoreAnatomical hierarchy score

R
ec

ep
tiv

e 
�e

ld
 a

re
a 

(d
eg

2 )

Receptive �eld area (deg2) log10 MI

lo
g 10

 M
I

N
or

m
al

iz
ed

 p
ro

b
ab

ili
ty

N
or

m
al

iz
ed

 p
ro

b
ab

ili
ty

N
or

m
al

iz
ed

 p
ro

b
ab

ili
ty

500 ms

75
 t

ria
ls

AM example unit: log10 MI = –1

LGN

AM

Size of mean receptive �eld

LGN V1 LM RL ALLP PM AM

LGN example unit: log10 MI = +1

Units:

Mice:

  926       2,878     1,914     2,146      1,718     2,601    1,311     2,221 

32          54          42          49           40          44         35          50  

0 20 40 60 80 100 120

0

2

4

6

8

C
ha

ng
e 

fr
om

 b
as

el
in

e
sp

ik
e 

ra
te

 (H
z)

Time from �ash onset (ms)

10º

Time (ms)

a

b

d

e

g

h

c f i

j

l

m

A
ut

oc
or

re
la

tio
n

0 50 100 150 200 250

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

50 100

Time to �rst spike (ms)

0

0.01

0.02

0 1,000 2,000
0

0.0005

0.0010

0.0015

−1 0 1 2
0

0.5

1.0

R
es

p
on

se
 d

ec
ay

 t
im

es
ca

le
 (m

s)
N

or
m

al
iz

ed
 p

ro
b

ab
ili

ty

k

0 50 100 150

Response decay timescale (ms)

0

0.01

0.02

–0.5 0.0 0.5

Anatomical hierarchy score

40

45

50

Fig. 3 | Four measures of hierarchical processing applied to the mouse 
visual system. a, Mean response (baseline-subtracted) to a full-field flash 
stimulus for units in eight visual regions. b, Distribution of time to first spike in 
response to the flash stimulus across all units in each of eight areas.  
c, Correlation between mean time to first spike and hierarchy score obtained 
from anatomical tracing studies. d, Outlines of the extent of the mean 
receptive field for each area, at 50% of the peak firing rate. Example mean 
receptive fields for the LGN and the AM are shown on the left. e, Distribution of 
receptive field sizes across all units. f, Correlation between mean receptive 
field size and anatomical hierarchy score. g, Raster plots showing the response 
of exemplar LGN and AM units to a 2-Hz drifting grating stimulus, with 

corresponding modulation index (MI). h, Distribution of modulation index 
across all units. i, Correlation between mean modulation index and anatomical 
hierarchy score. j, Mean autocorrelation averaged across all units in each area 
in the 250-ms period following the onset of a full-field flash stimulus.  
k, Distribution of response decay timescales across all units in each area.  
l, Correlation between mean response decay timescales and anatomical 
hierarchy score; n = 7,837 units from 58 mice. m, Key indicating the colour code 
used in the graphs, the number of units per area and the total number of mice 
per area. See Extended Data Fig. 4b for unit selection criteria. Data are 
mean ± 95% bootstrap confidence intervals. n = 15,713 units from 58 mice unless 
otherwise specified.rS, Spearman correlation coefficient.



90 | Nature | Vol 592 | 1 April 2021

Article

CCG observations are most consistent with a ladder-like hierarchy with 
abundant feedback (Extended Data Fig. 8).

We next assessed how this ordering of areas correlated with four 
classical measures of functional hierarchy11,12,15. First, we quantified the 
temporal latency of evoked responses to full-field flashes. Although 
units in each visual area have broadly distributed onsets (Fig. 3a, b), 
which is consistent with results in primates15, the mean visual latency 
of each area was correlated with its anatomical hierarchy score (Fig. 3c; 
Pearson’s r = 0.95, P = 0.00025). Statistical testing revealed significantly 
different latencies for all pairs of areas, except for LGN–V1, RL–LP, LP–
AL and AM–PM (Extended Data Fig. 9a). Differences in spontaneous 
firing rates do not account for these differences in latency (Extended 
Data Fig. 9b, c).

Second, the size of spatial receptive fields typically increases when 
ascending the visual processing stream20,31–33, which is probably due 
to the pooling of convergent inputs from lower regions. We measured 
receptive fields using a localized Gabor stimulus (Fig. 3d), and found 
a systematic increase in receptive field size with anatomical hierarchy 

score (Fig. 3d–f; Pearson’s r = 0.97, P = 8.3 × 10−5). Statistical testing 
revealed significantly different receptive field sizes for all pairs of areas, 
except for LM–RL (Extended Data Fig. 9d).

Third, the fraction of cells with phase-dependent grating responses is 
a useful measure of hierarchical level because it mirrors receptive field 
complexity34. We quantified this with a modulation index that reflects 
phase-dependent responses to drifting gratings34,35. The modulation 
index was highest in the LGN, whereas higher areas showed gradu-
ally less phase-dependent modulation (Fig. 3g–i, Pearson’s r = −0.89, 
P = 0.003). Statistical tests revealed significantly different modulation 
indices for all pairs of areas, except for RL–AL and AM–PM (Extended 
Data Fig. 9e).

Finally, previous work in primate and mouse brains demonstrated 
that the ‘timescale’ of neural activity increases in the upper echelons 
of the hierarchy12,13,36. We assessed intrinsic timescale by fitting an 
exponential decay function to the spontaneous spike-count autocor-
relation of each unit during grey screen periods between stimulus 
presentations. Whereas this mean intrinsic timescale for each area 
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Fig. 4 | Higher-order areas signal behaviourally relevant changes in image 
identity more strongly than lower-order areas. a, Experimental setup for the 
active (left) and passive (right) change detection tasks. b, After training, mice 
had high hit and low false alarm rates, with an average d′ of 2.0 ± 0.1 (n = 12 mice, 
21 sessions). c, Raster plots of exemplar units from the LGN, V1 and AM before 
and after change (n = 50 trials). d, Population response averaged over all units in 
the LGN, V1 and AM. For each area, the response to the change and pre-change 
image is shown as a darker and lighter line, respectively. The line represents the 
mean and the shaded areas represent s.e.m. e, Correlation between mean time 
to first spike after image change and anatomical hierarchy score across all eight 
areas; data are mean ± 95% bootstrap confidence intervals. f, Correlation 
between mean change modulation index and anatomical hierarchy score 

across all eight areas. Closed circles indicate responses during active 
behaviour, and open circles indicate responses during passive stimulus replay; 
data are mean ± 95% bootstrap confidence intervals. g, Schematic of random 
forest decoding analysis to identify change versus non-change trials, and 
comparison with mouse behaviour. h, Pearson correlation of decoder 
prediction (change probability) and mouse behavioural response (hit/miss) 
across trials. Data are mean ± s.e.m. across sessions; see Methods for details of 
included units. i, Key indicating the colour code used in the graphs in e, f and h, 
the number of units per area and the total number of mice per area. The natural 
scene images in a and g are shown for schematic purposes. The images shown 
to the mice are from refs. 51,52.
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was not correlated with the visual hierarchy (Extended Data Fig. 9f, g) 
(Pearson’s r = –0.24, P = 0.57), the response decay timescale12, which is 
quantified by fitting an exponential decay function to the spike-count 
autocorrelation of individual units during the evoked response to the 
full-field flash stimulus (Fig. 3j), was. Higher-order areas had a longer 
response decay timescale, and therefore maintain stimulus-evoked 
activity over longer temporal windows, than lower stages—an impor-
tant signature of multi-layer processing (Fig. 3j–l; Pearson’s r = 0.86, 
P = 0.007). Statistical testing revealed significantly distinct response 
decay timescales for all pairs of areas, except for LM–AL and AM–PM 
(Extended Data Fig. 9h).

Together, these four response metrics—along with our 
cross-correlation analysis—support the existence of a functional hier-
archy that spans the cortical and thalamic visual system. These metrics 
are not dependent on overall firing rate, which does not correlate with 
hierarchy score (Extended Data Fig. 9i, j). Because we densely sampled 
units across all cortical layers in each area, we were able to assess the 
layer-dependence of each of these metrics and found similar results 
(Extended Data Fig. 10a, b). Analysis of layer-wise CCG interactions indi-
cated that superficial layers (2/3 and 4) were hierarchically lower com-
pared to deep layers (5, 6) in the same area (Extended Data Fig. 10c–e).

The role of this hierarchy should ultimately be related to the behav-
ioural and cognitive operations implemented by the system, because 
higher levels are better positioned to integrate sensory input with 
behavioural goals. To test whether the hierarchy we found correlates 
with behaviourally relevant processing, we measured spiking activity 
during a visual change detection task (n = 4,057 units from 12 mice). In 
this go/no-go task, mice see briefly presented natural scenes (250 ms  
stimulus presentations, separated by 500 ms grey screen) (Fig. 4a, 
left). In each trial, a repeating ‘reference’ image changes identity after a 
random number of presentations, and mice are rewarded for detecting 
the change by licking a spout37,38. To assess hierarchical processing dur-
ing active behaviour compared with passive stimulation, we separated 
each recording session into two blocks: first, the mice performed the 
behavioural task for 60 min; second, the lick spout was retracted and 
the same sequence of visual stimuli were presented to the mice under 
these passive viewing conditions (Fig. 4a, right).

Mice performed with high hit and low false alarm rates (mean hit 
rate = 0.78, mean false alarm rate = 0.13, and mean detection sensi-
tivity (d′) = 2.0 ± 0.1, in 12 mice, 21 sessions; Fig. 4b). Units recorded 
during the task had clear visually evoked spiking responses to the 
images and showed greater evoked spike rates when the stimulus 
changed identity (from A to B at t = 0 in Fig. 4c, d). Consistent with 
results described above for full-field flashes, the first spike latency for 
image responses during behaviour was correlated with the anatomical 
hierarchy score (Fig. 4e).

When humans and rats detect changes in a stream of stimuli, change 
detection signals increase at higher cortical levels (the oddball P300)39–41.  
To detect such mismatch signals in the mice in this experiment, we 
computed a ‘change modulation index’ (CMI) that captures the dif-
ferential response to the same natural image when it was the refer-
ence (pre-change) compared with when it was the change image (see  
Methods). During active behaviour, CMI was positive for each area, 
which indicates that a change in image identity elicits stronger 
responses compared with presenting the same image repeatedly. More 
importantly, CMI systematically increased along the hierarchy from 
the LGN to the AM (Fig. 4f; Pearson’s r = 0.83, P = 0.011). Consistent 
with a role in change perception, we found a significant correlation of 
CMI with hierarchy on hit but not on miss trials (Extended Data Fig. 9k; 
hit trials, Pearson’s r = 0.85, P = 0.007; miss trials, Pearson’s r = 0.51, 
P = 0.2). Moreover, CMI values were larger during active behaviour 
compared with passive viewing of the same stimulus sequence, which 
indicates that change signals cannot be explained solely by passive 
effects, such as adaptation to the repeated reference image (Fig. 4f). 
Other aspects of neural activity during the task—including the baseline 

firing rate, response to the pre-change image and the response to the 
change image—were not correlated with hierarchy score (Extended 
Data Fig. 9l–n).

To assess whether activity at higher levels more closely covaries with 
the decisions made by the mouse, we used random forest decoders 
trained on the spiking activity of units within individual areas to predict 
when the image either did or did not change (Fig. 4g, Extended Data 
Fig. 9o). Decoders were separately trained for 20 units within each area 
and performed significantly better than chance across trials, indicating 
that change trials could be read out from all 8 areas (Extended Data 
Fig. 9p). Notably, however, we found a strong increase in trial-wise 
decoder-behaviour covariation at higher levels of the hierarchy, start-
ing with no correlation at the level of the LGN (Fig. 4h; Pearson’s r = 0.88, 
P = 0.004; see Methods). In other words, change-related signals are 
amplified at higher levels of the visual hierarchy, and spiking activity 
at these stages is more correlated with behavioural choices, which 
suggests that hierarchical processing is relevant for behaviour.

Discussion
One long-term goal of the Allen Institute is to systematically survey neu-
ronal activity in a way that is minimally biased, maximally reproducible 
and freely accessible to all42. Here we add to our Allen Brain Observatory 
database with a survey of spiking activity from approximately 100,000 
units recorded by Neuropixels probes. In this first report on our sur-
vey, we used CCG time-lag analysis to uncover a marked correspond-
ence between the anatomical and functional network organization of 
mouse cortical visual areas during sensory drive (Fig. 2f). Four popular 
measures of hierarchical processing—response latency, receptive field 
size, degree of phase modulation by a drifting grating, and response 
decay timescale—all changed systematically across the eight cortical 
and thalamic visual regions we examined (Fig. 3), as did change detec-
tion signals (Fig. 4f), especially during active behaviour (compared to 
passive viewing) and on trials in which the mouse correctly perceived a 
stimulus change (Extended Data Fig. 9k). This suggests that unexpected 
stimuli are amplified by successive levels of the hierarchy39–41,43, a result 
consistent with general theories of hierarchical predictive process-
ing44. Moreover, the behavioural importance of the hierarchy is further 
supported by our finding that higher levels have stronger trial-wise 
covariation with mouse behaviour than do lower ones (Fig. 4h).

Correlating functional metrics with a single anatomical variable—the 
hierarchy score—only serves as a crude, first-order characterization. 
Although, to our knowledge, we recorded spiking activity simultane-
ously from more mouse visual areas than any previous study, we sam-
pled only 6 of the 16 extant cortical visual areas45. The primate visual 
system is organized into distinct processing streams46,47; there is also 
anatomical and functional evidence for parallel streams in mice19,48–50. 
The cortex also displays additional levels of organization, including 
functional sub-modules and parallel processing streams19,21,33,47. These 
diverse aspects must be incorporated to establish a more complete 
mapping between cortical structure and function.
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Methods

No statistical methods were used to predetermine sample size. The 
experiments were not randomized and the investigators were not 
blinded to allocation during experiments and outcome assessment.

Mice
Mice were maintained in the Allen Institute for Brain Science animal 
facility and used in accordance with protocols approved by the Allen 
Institute’s Institutional Animal Care and Use Committee. The bulk of 
experiments used C57BL/6J wild-type mice (n = 30), supplemented by 
recordings in three transgenic lines (n = 8 Pvalb-IRES-Cre × Ai32, n = 12 
Sst-IRES-Cre × Ai32, and n = 8 Vip-IRES-Cre × Ai32), to facilitate the iden-
tification of genetically defined inhibitory cell types via opto-tagging53.

Wild-type C57BL/6J mice were purchased from Jackson Laboratories 
at postnatal day (P)25–50. For experiments involving opto-tagging of 
inhibitory cells, Pvalb-IRES-Cre, Vip-IRES-Cre and Sst-IRES-Cre mice 
were bred in-house and crossed with an Ai32 channelrhodopsin reporter 
line54. Pvalb-IRES-Cre;Ai32 breeding sets (pairs and trios) consisted of 
heterozygous Pvalb-IRES-Cre mice crossed with either heterozygous 
or homozygous Ai32(RCL-ChR2(H134R)_EYFP) mice. Pvalb-IRES-Cre 
is expressed in the male germline. To avoid germline deletion of the 
stop codon in the loxP-STOP-loxP cassette, Pvalb-IRES-Cre;Ai32 mice 
were not used as breeders. Sst-IRES-Cre;Ai32 breeding sets (pairs 
and trios) consisted of heterozygous Sst-IRES-Cre mice crossed with 
either heterozygous or homozygous Ai32(RCL-ChR2(H134R)_EYFP) 
mice. Vip-IRES-Cre;Ai32 breeding sets (pairs and trios) consisted of 
heterozygous Vip-IRES-Cre mice crossed with either heterozygous 
or homozygous Ai32(RCL-ChR2(H134R)_EYFP) mice. Cre+ cells from 
Ai32 lines are highly photosensitive, owing to the expression55 of 
Channelrhodopsin-2.

After surgery, all mice were single-housed and maintained on a 
reverse 12-h light cycle in a shared facility with room temperatures 
between 20 and 22 °C and humidity between 30 and 70%. All experi-
ments were performed during the dark cycle. For passive viewing 
experiments, mice were given ad libitum access to food and water. 
For behavioural experiments, mice were given an amount of water 
required to maintain 85% of their initial body weight, with ad libitum 
access to food.

Surgery
Headframe design. To enable co-registration across surgical, intrinsic 
signal imaging, and electrophysiology rigs, each mouse was implanted 
with a grade 5 titanium headframe that provides access to the brain 
via a cranial window and permits head fixation in a reproducible con-
figuration2. The cranial window angle was at 23° of roll and 6° of pitch, 
referenced to a plane passing through lambda and bregma and the me-
diolateral axis. Use of this headframe allowed the 5 mm craniotomy to 
be repeatability centred at x = –2.8 mm and y = 1.3 mm (origin at lambda).

The headframe was glued to a black acrylic photopolymer well that 
served four functions: (1) shielding the craniotomy and probes during 
the experiment, (2) providing a surface for precisely aligning the inser-
tion window, (3) routeing the animal ground to an exposed gold pin, 
and (4) holding threads for a plastic cap that protects the craniotomy 
before and after the experiment.

Surgical procedures. A pre-operative injection of dexamethasone  
(3.2 mg kg−1, subcutaneously (s.c.)) was administered 1 h before surgery 
to reduce swelling and postoperative pain by decreasing inflammation. 
Mice were initially anesthetized with 5% isoflurane (1–3 min) and placed 
in a stereotaxic frame (Model 1900, Kopf). Isoflurane levels were main-
tained at 1.5–2.5% for the duration of the surgery. Body temperature was 
maintained at 37.5 °C. Carprofen was administered for pain manage-
ment (5–10 mg kg−1, s.c.) and atropine was administered to suppress 
bronchial secretions and regulate hearth rhythm (0.02–0.05 mg mg kg−1,  

s.c.). An incision was made to remove skin, and the exposed skull was 
levelled with respect to pitch (bregma–lambda level), roll and yaw. 
The headframe was placed on the skull and fixed in place with White 
C&B Metabond (Parkell). Once the Metabond was dry, the mouse was 
placed in a custom clamp to position the skull at a rotated angle of 
20°, to facilitate creation of the craniotomy over the visual cortex. A 
circular piece of skull 5 mm in diameter was removed, and a durotomy 
was performed. The brain was covered by a 5-mm-diameter circular 
glass coverslip, with a 1-mm lip extending over the intact skull. The 
bottom of the coverslip was coated with a layer of polydimethylsilox-
ane (SYLGARD 184, Sigma-Aldrich) to reduce to reduce adhesion to 
the brain surface. The coverslip was secured to the skull with Vetbond 
(Patterson Veterinary)56. Kwik-Cast (World Precision Instruments) was 
added around the coverslip to further seal the implant, and Metabond 
bridges between the coverslip and the headframe well were created 
to hold the Kwik-Cast in place. At the end of the procedure, but before 
recovery from anesthesia, the mouse was transferred to a photodocu-
mentation station to capture a spatially registered image of the cranial 
window (Extended Data Fig. 1a).

Surgery quality control. In cases of excessive bleeding or other com-
plications, the surgical procedure was aborted and the mouse was 
euthanized. Mice that completed surgery entered a 7–10 day recovery 
period that included regular checks for overall health, cranial window 
clarity and brain health. If mice failed the first health check, they re-
ceived another one the following week. Mice that exhibited signs of 
deteriorating health or damaged brain surface vasculature were not 
passed on to the next step. Out of 105 mice entering the surgery step, 
4 were removed from the pipeline due to quality control failures at this 
stage (Extended Data Fig. 2a).

Intrinsic signal imaging
Intrinsic signal imaging (ISI) measures the haemodynamic response 
of the cortex to visual stimulation across the entire field of view. This 
technique can be used to obtain retinotopic maps representing the 
spatial relationship of the visual field (or, in this case, coordinate posi-
tion on the stimulus monitor) to locations within each cortical area. 
This mapping procedure was used to delineate functionally defined 
visual area boundaries to enable targeting of Neuropixels probes to 
retinotopically defined locations in primary and secondary visual 
areas57.

Data acquisition. Mice were lightly anesthetized with 1–1.4% isoflurane 
administered with a SomnoSuite (model 715; Kent Scientific) and vital 
signs were monitored with a PhysioSuite (model PS-MSTAT-RT). Eye 
drops (Lacri99 Lube Lubricant Eye Ointment; Refresh) were applied 
to maintain hydration and clarity of eyes during anesthesia. Imaging 
sessions began with a vasculature image acquired under green illumina-
tion (527-nm LEDs; Cree., C503B-GCN-CY0C0791). Next, the imaging 
plane was defocused between 500 μm and 1,500 μm along the optical 
axis, to match our established retinotopic mapping procedure2. The 
haemodynamic response to a visual stimulus was imaged under red 
light (635-nm LEDs; Avago Technologies, HLMP-EG08-Y2000) with 
an Andor Zyla 5.5 10 tap sCMOS camera. The stimulus consisted of an 
alternating checkerboard pattern (20° wide bar, 25° square size) moving 
across a mean luminance grey background. On each trial, the stimulus 
bar was swept across the four cardinal axes 10 times in each direction 
at a rate58 of 0.1 Hz. Up to 10 trials were performed on each mouse.

Data processing. A minimum of three trials were averaged to produce 
altitude and azimuth phase maps, calculated from the discrete Fourier 
transform of each pixel. A ‘sign map’ was produced from the phase 
maps by taking the sine of the angle between the altitude and azimuth 
map gradients. In the sign maps, each cortical visual area appears as 
a contiguous red or blue region59. These maps are used to confirm the 
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cortical area identity of each probe insertion, using the vasculature as 
fiducial markers (Extended Data Fig. 1b, h, i).

The altitude and azimuth maps were also used to create a map of 
eccentricity from the centre of visual space (the intersection of 0° 
altitude and 0° azimuth). Because the actual centre of gaze will vary 
from mouse to mouse, the eccentricity map was shifted to align with 
the screen coordinates at the centre of V1 (which maps to the centre of 
the retina). This V1-aligned eccentricity map was used for probe target-
ing, to ensure that recorded neurons represent a consistent region on 
the retina, approximately at the centre of the right visual hemifield.

ISI quality control. The quality control process for the ISI-derived 
maps included four distinct inspection steps:

(1) The brain surface and vasculature images were inspected 
post-acquisition for clarity, focus, and position of the cranial window 
within the field of view.

(2) Individual trials were inspected for visual coverage range and 
continuity of phase maps, localization of the signal from the amplitude 
maps and stereotypical organization of sign maps. Only trials respect-
ing these criteria were included in the final average, and a minimum of 
three trials were required.

(3) Visual area boundaries were delineated using automated seg-
mentation, and maps were curated on the basis of stringent criteria to 
ensure data quality. The automated segmentation and identification of 
a minimum of six visual areas including V1, LM, RL, AL, AM and PM was 
required. A maximum of three manual adjustments were permitted to 
compensate for algorithm inefficiency.

(4) Each processed retinotopic map was inspected for coverage range 
(35–60° altitude and 60–100° azimuth), bias (absolute value of the 
difference between max and min of altitude or azimuth range; <10°), 
alignment of the centre of retinotopic eccentricity with the centroid 
of V1 (<15° apart), and the area size of V1 (>2.8 cm2).

If quality control was not passed after the first round of ISI mapping, 
the procedure was repeated up to two more times to obtain a pass-
ing map. In addition to the quality control procedures carried out on 
the ISI-derived maps, the vasculature images were also examined for 
the presence of white artefacts on the brain surface. White artefacts, 
an indicator of potential brain damage, were grounds for failing the 
mouse out of the pipeline. Out of 101 mice entering ISI, 9 did not pass 
onto habituation owing to quality control failures during this step 
(Extended Data Fig. 2b).

Habituation and behaviour training
Habituation for passive viewing experiments. Mice underwent two 
weeks of habituation in sound-attenuated training boxes containing 
a headframe holder, running wheel and stimulus monitor (Extended 
Data Fig. 1c). Each mouse was trained by the same operator throughout 
the two-week period. During the first week, the operator gently handles 
the mice, introduces them to the running wheel, and head-fixes them 
with progressively longer durations each day. During the second week, 
mice run freely on the wheel and are exposed to visual stimuli for 10 to  
50 min per day. The following week, mice undergo habituation sessions of  
75 min and 100 min on the recording rig, in which they view a truncated 
version of the same stimulus that will be shown during the experiment.

Behaviour training. A subset of mice were trained to perform a change 
detection task in which one of 8 natural images was continuously 
flashed (250-ms image presentation followed by 500-ms grey screen) 
and mice were rewarded for licking when the image identity changed 
(Fig. 4a). The change detection task has been described in detail previ-
ously37. In brief, for each trial the time of image change was drawn from 
an exponential distribution with a minimum of 5 image flashes (3.75 s) 
and a maximum of 11 flashes (8.25 s). Licking before the image change 
restarted the trial. Trials in which the mouse licked within 750 ms of 
image change were ‘hits’, whereas licks within 750 ms of non-change 

catch trials (occurring at the same distribution of times since the last 
change as change trials) were classified as false alarms (Fig. 4b). Mice 
must perform the task with a d′ of greater than 1 and have at least 100 
contingent (non-aborted) trials for 3 consecutive days before moving 
to the recording rig.

Habituation quality control. Upon completion of the second week 
of habituation, mice received an assessment of overall stress levels 
that reflected observations made by the trainer, including coat ap-
pearance, components of the mouse grimace scale and overall body 
movements. Out of 92 mice entering habituation for passive viewing 
experiments, 2 did not pass on to the insertion window implant step 
(Extended Data Fig. 2c).

Insertion window implant
Window generation. After the completion of a successful ISI map, 
a custom insertion window was generated for each mouse. First, six 
insertion targets were manually drawn on the V1-aligned eccentricity 
map using a web-based annotation tool. Targets were positioned at the 
centre of retinotopy of V1, LM, AL, AM and PM; because the retinotopic 
centre of RL often lies on the boundary between RL and S1 barrel cortex, 
the target location was adjusted to be closer to the geometric centre 
of this area. The coordinates of each target were used to automatically 
generate the outlines of the insertion window, which was subsequently 
laser-cut out of 0.5 mm clear PETG plastic (Ponoko). When seated in 
the headframe well, the window facilitates access to the brain via holes 
over each of the six visual areas. A solidified agarose/ACSF mixture 
injected between the brain and the window stabilizes the brain during 
the recording.

Surgical procedure. On the day of recording, the cranial coverslip 
was removed and replaced with an insertion window containing holes 
aligned to six cortical visual areas. First, the mouse was anesthetized 
with isoflurane (3–5% induction and 1.5% maintenance, 100% O2) and 
eyes were protected with ocular lubricant (I Drop, VetPLUS). Body tem-
perature was maintained at 37.5 °C (TC-1000 temperature controller, 
CWE, Incorporated). Metabond bridges were removed from the glass 
cranial window, followed by the sealing layer of Kwik-Cast. Using a 2-mm 
silicone suction cup, the cranial window was gently lifted to expose 
the brain. The insertion window was then placed in the headframe 
well and sealed with Metabond. An agarose mixture was injected un-
derneath the window and allowed to solidify. The mixture consisted 
of 0.4 g high EEO Agarose (Sigma-Aldrich), 0.42 g Certified Low-Melt 
Agarose (BioRad), and 20.5 ml ACSF (135.0 mM NaCl, 5.4 mM KCl, 1.0 mM  
MgCl2, 1.8 mM CaCl2, 5.0 mM HEPES). This mixture was optimized to 
be firm enough to stabilize the brain with minimal probe drift, but pli-
able enough to allow the probes to pass through without bending. A 
layer of silicone oil (30,000 cSt, Aldrich) was added over the holes in 
the insertion window to prevent the agarose from drying (Extended 
Data Fig. 1d). A 3D-printed plastic cap was screwed into the headframe 
well to keep out cage debris. At the end of this procedure, mice were 
returned to their home cages for 1–2 h.

Insertion window implant quality control. Three out of 90 mice did 
not pass through to the recording step owing to procedure failures dur-
ing implantation of the insertion window. These failures were caused by 
the headframe coming loose from the skull or excessive bleeding after 
removal of the cranial window, after which the mice were euthanized 
(Extended Data Fig. 2d).

Neuropixels recordings
Probes. All neural recordings were carried out with Neuropixels 
probes6. Each probe contains 960 recording sites, a subset of 374 
(‘Neuropixels 3a’) or 383 (‘Neuropixels 1.0’) of which can be configured 
for recording at any given time. The electrodes closest to the tip were 



always used, providing a maximum of 3.84 mm of tissue coverage. The 
sites are oriented in a checkerboard pattern on a 70 μm wide × 10 mm 
long shank. Neural signals are routed to an integrated base containing 
amplification, digitization and multiplexing circuitry. The signals from 
each recording site are split in hardware into a spike band (30-kHz sam-
pling rate, 500-Hz high-pass filter) and an LFP band (2.5-kHz sampling 
rate, 1,000-Hz low-pass filter). Owing to their dense site configuration 
(20-μm vertical separation along the entire length of the shank), each 
probe has the capacity to record hundreds of neurons at the same time. 
Our goal was to insert six probes per mouse. Overall, we achieved a 
penetration success of 5.7 probes per mouse, with failures due to dura 
regrowth, collisions with the protective cone or opto-tagging fibre 
optic cable, or probe breakage during manipulation.

The base of each probe contains 32 10-bit analogue-to-digital con-
verters (ADCs), each of which are connected to 12 spike-band channels 
and 12 LFP-band channels via multiplexers. A full cycle of digitization 
requires 156 samples: 12 samples from each of 12 spike-band channels, 
and 1 sample from each of 12 LFP-band channels. Each ADC serves a 
contiguous bank of odd or even channels, so ADC 1 digitizes channels 
[1,3,5,...,23], ADC 2 digitizes channels [2,4,6,...,24], ADC 3 digitizes chan-
nels [25,27,29,...,47], etc. Because of the need for interleaved sampling, 
common-mode noise will be shared across all channels that are acquired 
simultaneously, for example, [1,2,25,26,49,50,...,361,362].

Experimental rig. The experimental rig (Extended Data Fig. 1g) was 
designed to allow six Neuropixels probes to penetrate the brain ap-
proximately perpendicular to the surface of the visual cortex. Each 
probe is mounted on a 3-axis micromanipulator (New Scale Technolo-
gies), which are in turn mounted on a solid aluminium plate, known as 
the probe cartridge. The cartridge can be removed from the rig using 
a pair of pneumatic tool-changers, to facilitate probe replacement 
and maintenance.

Workflow sequencing engine. The experimental procedure was 
guided by a work sequencing engine (WSE), a custom graphical user 
interface (GUI) written in Python. This software ensured that all experi-
mental steps were carried out in the correct order, reducing trial-to-trial 
variability and optimizing operator efficiency. The GUI logged the 
operator ID, mouse ID and session ID, and ensured that all hardware 
and software were properly configured. The WSE was also used to start 
and stop the visual stimulus, the body- and eye-tracking cameras, and 
Neuropixels data acquisition.

Probe alignment. The tip of each probe was aligned to its associated 
opening in the insertion window using a coordinate transformation 
obtained via a previous calibration procedure. The XY locations of the 
six visual area targets were supplied by the WSE, and these values were 
translated into XYZ coordinates for each 3-axis manipulator using a 
custom Python script. The operator then moved each probe into place 
with a joystick, with the probes fully retracted along the insertion axis.

Application of CM-DiI. CM-DiI (1 mM in ethanol; Thermo Fisher, 
V22888) was used to localize probes during the ex vivo imaging step 
because its fluorescence is maintained after brain clearing, and it has 
a limited diffusion radius. The probes were coated with CM-DiI before 
each recording by immersing them one by one into a well filled with 
dye, for approximately 1 min each.

Head fixation. The mouse was placed on the running wheel and fixed 
to the headframe clamp with three set screws. Next, the plastic cap 
was removed from the headframe well and an aluminium cone with 
3D-printed wings was lowered to prevent the mouse’s tail from contact-
ing the probes. An infrared dichroic mirror was placed in front of the 
right eye to allow the eye-tracking camera to operate without interfer-
ence from the visual stimulus. A black curtain was then lowered over 

the front of the rig, placing the mouse in complete darkness except for 
the visual stimulus monitor.

Grounding. A 32 AWG silver wire (A-M Systems) was epoxied to the 
headframe before the initial headframe/cranial window surgery. This 
wire becomes electrically conductive with the brain surface after the 
application of the ACSF/agarose mixture beneath the insertion window. 
The wire was pre-soldered to a gold pin embedded in the headframe 
well, which mates with a second gold pin on the protective cone. The 
cone pin was soldered to 22 AWG hook-up wire (SparkFun Electron-
ics), which was connected to both the behaviour stage and the probe 
ground. Before the experiment, the brain-to-probe ground path was 
checked using a multimeter.

The reference connection on the Neuropixels probes was per-
manently soldered to ground using a silver wire, and all recordings 
were made using an external reference configuration. The headstage 
grounds (which are contiguous with the Neuropixels probe grounds) 
were connected together with 36 AWG copper wire (Phoenix Wire). For 
Neuropixels 3a, two probes had a direct path to animal ground, and the 
others were wired up serially. All probes were also connected to the 
main ground via the data cable (a dual coaxial cable). For Neuropixels 
1.0, all probes were connected in parallel to animal ground, and were 
not connected to the main ground through the data cable (a single 
twisted pair cable).

Probe insertion. The probe cartridge was initially held approximately 
30 cm above the mouse. After the mouse was secured in the headframe, 
the cartridge was lowered so the probe tips were approximately 2.5-mm 
above the brain surface. The probes were then manually lowered one by 
one to the brain surface until spikes were visible on the electrodes clos-
est to the tip. After the probes penetrated the brain to a depth of around 
100 μm, they were inserted automatically at a rate of 200 μm min−1  
(total of 3.5 mm or less in the brain) to avoid damage caused by rapid 
insertion60. After the probes reached their targets, they were allowed 
to settle for 5–10 min. Photo-documentation was taken with the probes 
fully retracted, after the probes reached the brain surface (Extended 
Data Fig. 1e), and again after the probes were fully inserted.

Data acquisition and synchronization. Neuropixels data was acquired 
at 30 kHz (spike band) and 2.5 kHz (LFP band) using the Open Ephys 
GUI61. Gain settings of 500× and 250× were used for the spike band and 
LFP band, respectively. Each probe was either connected to a dedicated 
FPGA streaming data over Ethernet (Neuropixels 3a) or a PXIe card 
inside a National Instruments chassis (Neuropixels 1.0). Raw neural 
data was streamed to a compressed format for archiving, which was 
extracted before analysis.

Videos of the eye and body were acquired at 30 Hz. The angu-
lar velocity of the running wheel was recorded at the time of each 
stimulus frame, at approximately 60 Hz. Synchronization signals for 
each frame were acquired by a dedicated computer with a National 
Instruments card acquiring digital inputs at 100 kHz, which was 
considered the master clock. A 32-bit digital ‘barcode’ was sent 
with an Arduino Uno (SparkFun DEV-11021) every 30 s to synchro-
nize all devices with the neural data. Each Neuropixels probe has 
an independent sample rate between 29,999.90 Hz and 30,000.31 
Hz, making it necessary to align the samples offline to achieve pre-
cise synchronization. The synchronization procedure used the 
first matching barcode between each probe and the master clock 
to determine the clock offset, and the last matching barcode to 
determine the clock scaling factor. If probe data acquisition was 
interrupted at any point during the experiment, each contiguous 
chunk of data was aligned separately. Because one LFP band sample 
was always acquired after every 12th spike band sample, these data 
streams could be synchronized automatically once the spike band 
clock rate has been determined.
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To synchronize the visual stimulus to the master clock, a silicon 

photodiode (PDA36A, Thorlabs) was placed on the stimulus monitor 
above a ‘sync square’ that flips from black to white every 60 frames. The 
analogue photodiode signal was thresholded and recorded as a digital 
event by the sync computer. Individual frame times were reconstructed 
by interpolating between the photodiode on/off events.

Stimulus monitor. Visual stimuli were generated using custom scripts 
based on PsychoPy62 and were displayed using an ASUS PA248Q LCD 
monitor, with 1,920 × 1,200 pixels (55.7 cm wide, 60 Hz refresh rate). 
Stimuli were presented monocularly, and the monitor was positioned 
15 cm from the right eye of the mouse and spanned 120° × 95° of visual 
space before stimulus warping. Each monitor was gamma corrected 
and had a mean luminance of 50 cd m−2. To account for the close view-
ing angle of the mouse, a spherical warping was applied to all stimuli 
to ensure that the apparent size, speed and spatial frequency were 
constant across the monitor as seen from the mouse’s perspective.

Stimuli for passive viewing experiments. All experiments began with 
a receptive field mapping stimulus consisting of 2 Hz, 0.04 cycles per 
degree drifting gratings with a 20° circular mask. These Gabor patches 
randomly appeared at one of 81 locations on the screen (9 × 9 grid) for 
250 ms at a time, with no blank interval. The receptive field mapping 
stimulus was followed by a series of dark or light full-field flashes, lasting 
250 ms each and separated by a 2-s inter-trial interval.

Next, mice were shown one of two possible stimulus sets. The first, 
called ‘Brain Observatory 1.1’ is a concatenation of two sessions from 
the Two-Photon Imaging Brain Observatory2 (Extended Data Fig. 6b). 
Drifting gratings were shown with a spatial frequency of 0.04 cycles 
per degree, 80% contrast, 8 directions (0°, 45°, 90°, 135°, 180°, 225°, 
270°, 315°, clockwise from 0° = right-to-left) and 5 temporal frequen-
cies (1, 2, 4, 8 and 15 Hz), with 15 repeats per condition. Static grat-
ings were shown at 6 different orientations (0°, 30°, 60°, 90°, 120°, 
150°, clockwise from 0° = vertical), 5 spatial frequencies (0.02, 0.04, 
0.08, 0.16, 0.32 cycles per degree) and 4 phases (0, 0.25, 0.5, 0.75); 
they are presented for 0.25 s, with no intervening grey period. The 
Natural Images stimulus consisted of 118 natural images taken from 
the Berkeley Segmentation Dataset63, the van Hateren Natural Image 
Dataset51 and the McGill Calibrated Colour Image Database52. The 
images were presented in greyscale and were contrast-normalized and 
resized to 1,174 × 918 pixels. The images were presented in a random 
order for 0.25 s each, with no intervening grey period. Two natural 
movie clips were taken from the opening scene of the movie Touch of 
Evil64. Natural Movie One was a 30-s clip repeated 20 times (2 blocks 
of 10), while Natural Movie Three was a 120-s clip repeated 10 times 
(2 blocks of 5). All clips were contrast-normalized and were presented 
in greyscale at 30 fps.

The second stimulus set, called ‘Functional Connectivity’, consisted 
of a subset of the stimuli from the Brain Observatory 1.1 set shown with 
a higher number of repeats (Extended Data Fig. 6c). Drifting gratings 
were presented at 4 directions and one temporal frequency (2 Hz) with 
75 repeats. A contrast-tuning stimulus consisting of drifting gratings at 
4 directions (0°, 45°, 90°, 135°, clockwise from 0° = left-to-right) and 9 
contrasts (0.01, 0.02, 0.04, 0.08, 0.13, 0.2, 0.35, 0.6, 1.0) was also shown. 
The Natural Movie One stimulus was presented a total of 60 times, with 
an additional 20 repeats of a temporally shuffled version. Last, a dot 
motion stimulus consisting of approximately 200 1.5°-radius white 
dots on a mean-luminance grey background moving at one of 7 speeds 
(0° s−1, 16° s−1, 32° s−1, 64° s−1, 128° s−1, 256° s−1, 512° s−1) in four different 
directions (−45°, 0°, 45°, 90°; + = clockwise; 0° = left-to-right) at 90% 
coherence was shown.

Stimuli for behavioural experiments. Mice carried out one hour of 
a change detection task37. After the behaviour session, the lick spout 
was retracted and receptive field mapping stimuli and full-field flashes 

were presented for 25 min, with the same parameters as those used 
in the passive viewing experiments. Finally, the exact sequence and 
timing of images viewed during the behavioural task were re-played 
(one hour). All other aspects of the rig—including the running wheel, 
stimulus monitor, and electrophysiological recordings—were the same 
as for the passive viewing experiments.

Probe removal and cleaning. When the stimulus set was over, probes 
were retracted from the brain at a rate of 1 mm s−1, after which the probe 
cartridge was raised to its full height. The protective cap was screwed 
into the headframe well, then mice were removed from head fixation 
and returned to their home cages overnight. Probes were immersed in 
a well of 1% Tergazyme for around 12 h, which was sufficient to remove 
tissue and silicone oil before the next recording session.

Quality control for the Neuropixels recording session. Neuropixels 
recording sessions were subjected to the following quality control 
criteria (Extended Data Fig. 2e):

Eye foam. If white build-up around the eye obscured the pupil, the 
experiment was cancelled and the session was failed (8 mice).

Bleeding. If bleeding resulting from the window implant or the probe 
insertion obscured the vasculature, the session was failed (4 mice).

Probe insertion. If fewer than four probes successfully entered the 
brain, the session was failed (1 mouse).

Dropped frames. If the stimulus monitor photodiode measured more 
than 60 delayed frames, the session was failed (1 mouse).

Missing files. If any critical files were overwritten, the session was 
failed (2 mice).

Noise levels. If high root mean square noise levels in the spike band 
persisted after median subtraction, the session was failed (4 mice).

Probe drift. If one or more probes exhibited more than 80 μm of drift 
over the course of the experiment, the session was failed (6 mice). 
Typical drift levels were around 40 μm, and drift levels were highly 
correlated across probes.

In total, out of 87 mice entering the recording step, 61 passed 
session-level quality control.

Ex vivo imaging
Tissue clearing. Mice were perfused with 4% paraformaldehyde (PFA) 
(after induction with 5% isoflurane and 1 l min−1 of O2). The brains were 
preserved in 4% PFA, rinsed with 1× PBS the next morning, and stored 
at 4 °C in PBS. Next, brains were run through a tissue clearing process 
based on the iDISCO method65. This procedure uses different solvents 
that dehydrate and delipidate the tissue. The first day, the brains were 
immersed in different concentrations of methanol (20, 40, 60%) for an 
hour each, then overnight in 80% methanol. On the second day, they 
were dipped into 100% methanol (twice for one hour) and then into a mix-
ture of 1/3 methanol and 2/3 dichloromethane overnight. On the third 
day, the brains were moved from pure dichloromethane (2 × 20 min)  
to pure dibenzyl ether, where they remained for 2–3 days until clearing 
was complete (Extended Data Fig. 5a).

Optical projection tomography. Whole-brain 3D imaging was accom-
plished with optical projection tomography (OPT)66–68. The OPT instru-
ment consisted of collimated light sources for transmitted illumination 
(on-axis white LED, Thorlabs MNWHL4 with Thorlabs SM2F32-A lens 
and Thorlabs DG20-600 diffuser) or fluorescence excitation (off-axis 
Thorlabs M530L3, with Thorlabs ACL2520U-DG6-A lens and Chroma 
ET535/70m-2P diffuser), a 0.5× telecentric lens (Edmund Optics 62-932) 
with emission filter (575 nm LP, Edmund Optics 64-635), and a camera 
(IDS UI-3280CP). The specimen was mounted on a rotating magnetic 
chuck attached to a stepper motor, which positioned the specimen on 
the optical axis and within a glass cuvette filled with dibenzyl ether. 
The stepper motor and illumination triggering were controlled with 
an Arduino Uno (SparkFun DEV-11021) and custom shield including a 



Big Easy Driver (SparkFun ROB-12859). Instrument communication and 
image capture was accomplished with MicroManager69.

A series of 400 images were captured with transmitted LED illumina-
tion with each image captured with the specimen rotated 0.9° relative 
to the previous position. This series of 400 images was repeated with 
the fluorescence excitation LED. Each channel was stored as a separate 
OME-TIFF dataset before extracting individual planes and metadata 
required for reconstruction using a custom Python script (Extended 
Data Fig. 5b).

Isotropic 3D volumes were reconstructed from these projec-
tion images using NRecon (Bruker). The rotation axis offset and 
region-of-interest bounds were set for each image series pair using 
the transmitted channel dataset, then the same values applied to the 
fluorescence channel dataset. A smoothing level of 3 using a Gaussian 
kernel was applied to all images. Reconstructions were exported as 
single-plane 16-bit TIFF images taken along the rotation axis with final 
voxel size of 7.9 μm per side (Extended Data Fig. 5c).

Registering probes to the common coordinate framework. Recon-
structed brains were downsampled to 10 μm per voxel and roughly 
aligned to the Allen Institute Common Coordinate Framework (CCFv3) 
template brain using an affine transform. The volume was then cropped 
to a size of 1,023 × 1,024 × 1,024 and converted to Drishti format (https://
github.com/nci/drishti). Next, 6–54 registration points were marked in 
up to 14 coronal slices of the individual brain by comparing to the CCFv3 
template brain70 (Extended Data Fig. 5c). Fluorescent probe tracks 
were manually labelled in coronal slices of the individual brain, and the 
best-fit line was found using singular value decomposition (Extended 
Data Fig. 5e). The registration points were used to define a 3D nonlinear 
transform (VTK thinPlateSplineTransform), which was used to translate 
each point along the probe track into the CCFv3 coordinate space. Each 
CCFv3 coordinate corresponds to a unique brain region, identified by 
its structure acronym (for example, CA3, LP, VISp, etc.). A list of CCFv3 
structure acronyms along each track was compared to the physiologi-
cal features measured by each probe (for example, unit density, LFP 
theta power; Extended Data Fig. 5f). The locations of major structural 
boundaries were manually identified to align the CCFv3 labels with the 
physiology data; the most important features were the decrease in unit 
density at the cortical surface and L6–hippocampus boundary, and 
the decrease in theta power at the hippocampus–thalamus boundary. 
After the manual alignment procedure, each recording channel (and its 
associated units) was assigned to a unique CCFv3 structure (Extended 
Data Fig. 5g). White matter structures were not included; any units 
mapped to a white matter structure inherited the grey matter structure 
label that was immediately ventral along the probe axis.

Identification of cortical visual area targets. To confirm the identity 
of the cortical visual areas, images of the probes taken during the ex-
periment were compared to images of the brain surface vasculature 
taken during the ISI session. Vasculature patterns were used to overlay 
the visual area map on an image of the brain surface with the probes 
inserted. When done in custom software, key points were selected along 
the vasculature on both images and a perspective transform (OpenCV) 
was performed to warp the insertion image to the retinotopic map. 
When done manually, the overlap of both images was done in Photo-
shop or Illustrator (Adobe Suite). In both cases, the probe entry points 
were manually annotated. Finally, an area was assigned to each probe. 
Overall, successful targeting of the 6 target visual areas occurred at the 
following rates: 89% for AM, 72% for PM, 98% for V1, 85% for LM, 79% 
for AL and 90% for RL. A small subset of penetrations were mapped to 
LI, MMA or MMP45. Penetration points that could not be unambigu-
ously associated with a particular visual area were classified as ‘VIS’. If 
the cortical area label obtained via CCFv3 registration did not match 
the area identified in the insertion image overlay, the insertion image 
overlay took precedence.

Cortical depth and layer labels. For cortical units registered to the 
CCFv3, we used ‘cortical streamlines’ to extract their relative depths 
(Extended Data Fig. 10a; 0 = surface, 1 = white matter). Each point in 
the cortex is mapped to a unique depth along a path orthogonal to the 
equi-potential fields between the brain surface and white matter (based 
on the solution to Laplace’s equation in three dimensions). This method 
yields normalized depth estimates even for regions of extreme cortical 
curvature, such as the prefrontal cortex. Streamlines are preferable to 
using distance along the probe axis, as they account for differences in 
insertion angle across areas.

In addition, CCFv3 coordinates were used as indices into the template 
volume in order to extract layer labels for each cortical unit (L1, L2/3, 
L4, L5, or L6). The relative thickness of each layer, which can vary both 
within and across areas, is based on the average of the 1,675 individual 
brains used to create the template volume.

Ex vivo imaging quality control. Quality control was performed on a 
probe-by-probe, rather than a mouse-by-mouse, basis. Some probes 
were not visible in the OPT images due to faint CM-DiI signal or recon-
struction artefacts caused by air bubbles in the tissue (Extended Data 
Fig. 2f). In total, 284 out of 332 probes were mapped to the CCFv3. 
Probes that failed the ex vivo imaging step were not excluded from 
further analysis, but only included structure labels for channels in the 
cortex (with the bottom of the cortex identified on the basis of the drop 
in unit density between the cortex and the hippocampus).

Spike sorting
Data pre-processing. Data was written to disk in a format containing 
the original 10-bit samples from each ADC. These files were backed 
up to a tape drive, then extracted to a new set of files that represent 
each sample as a 16-bit integer, scaled to account for the gain settings 
on each channel. Separate data files were generated for the LFP band 
and the spike band, along with additional files containing the times of 
synchronization events. The extracted files consume approximately 
36% more disk space than the originals.

Before spike sorting, the spike-band data passed through four steps: 
offset removal, median subtraction, filtering and whitening. First, the 
median value of each channel was subtracted to centre the signals 
around zero. Next, the median across channels was subtracted to remove 
common-mode noise. Although Neuropixels have been measured to have 
a spike-band RMS noise levels of 5.1 μV in saline6, this cannot be achieved 
in practice when recording in vivo. The signals become contaminated 
by background noise in neural tissue; movement artefacts associated 
with mouse locomotion, whisking and grooming; and electrical noise 
introduced by the additional wiring required to support several probes 
on one rig. To remove noise sources that are shared across channels, the 
median was calculated across channels that are sampled simultaneously, 
leaving out adjacent (even/odd) channels that are probably measuring 
the same spike waveforms, as well as reference channels that contain no 
signal. For each sample, the median value of channels n:24:384, where 
n = [1,2,3,…,24], was calculated, and this value was subtracted from the 
same set of channels. This method rejects high-frequency noise more 
effectively than subtracting the median of all channels, at the cost of 
leaving a residual of around 2 μV for large spikes, visible in the mean 
waveforms. Given that this value is well below the RMS noise level of the 
Neuropixels probes under ideal conditions, it should not affect spike 
sorting. The original data are overwritten with the median-subtracted 
version, with the median value of each block of 16 channels saved sepa-
rately, to enable reconstruction of the original signal if necessary. The 
median-subtracted data file is sent to the Kilosort2 MATLAB package 
(https://github.com/mouseland/Kilosort2, commit 2fba667359dbd-
dbb0e52e67fa848f197e44cf5ef; 8 April 2019), which applies a 150-Hz 
high-pass filter, followed by whitening in blocks of 32 channels. The fil-
tered, whitened data are saved to a separate file for the spike-sorting step.

https://github.com/nci/drishti
https://github.com/nci/drishti
https://github.com/mouseland/Kilosort2
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Kilosort2. Kilosort2 was used to identify spike times and assign spikes 
to individual units24. Traditional spike sorting techniques extract snip-
pets of the original signal and perform a clustering operation after 
projecting these snippets into a lower-dimensional feature space. By 
contrast, Kilosort2 attempts to model the complete dataset as a sum of 
spike ‘templates’. The shape and locations of each template is iteratively 
refined until the data can be accurately reconstructed from a set of N 
templates at M spike times, with each individual template scaled by an 
amplitude, a. A critical feature of Kilosort2 is that it allows templates 
to change their shape over time, to account for the motion of neurons 
relative to the probe over the course of the experiment. Stabilizing 
the brain using an agarose-filled plastic window has almost eliminated 
probe motion associated with mice running, but slow drift of the probe 
over approximately 3-h experiments is still observed. Kilosort2 is able 
to accurately track units as they move along the probe axis, eliminating 
the need for the manual merging step that was required with the origi-
nal version of Kilosort26. The spike-sorting step runs in approximately 
real time (around 3 h per session) using a dual-processor Intel 4-core, 
2.6-GHz workstation with an NVIDIA GTX 1070 GPU.

Removing putative double-counted spikes. The Kilosort2 algo-
rithm will occasionally fit a template to the residual left behind after 
another template has been subtracted from the original data, result-
ing in double-counted spikes. This can create the appearance of an 
artificially high number of ISI violations for one unit or artificially 
high zero-time-lag synchrony between nearby units. To eliminate the 
possibility that this artificial synchrony will contaminate data analysis, 
the outputs of Kilosort2 are post-processed to remove spikes with peak 
times within 5 samples (0.16 ms) and peak waveforms within 5 chan-
nels (around 50 μm). This process removes more than 10 within-unit 
overlapping spikes from 2.5 ± 1.8% of units per session. It removes 
2.05 ± 0.65% of spikes in total, after accounting for between-unit over-
lapping spikes.

Removing units with artefactual waveforms. Kilosort2 generates 
templates of a fixed length (2 ms) that matches the time course of 
an extracellularly detected spike waveform. However, there are no 
constraints on template shape, which means that the algorithm often 
fits templates to voltage fluctuations with characteristics that could 
not physically result from the current flow associated with an action 
potential. The units associated with these templates are considered 
‘noise’, and are automatically filtered out on the basis of three criteria: 
spread (single channel, or more than 25 channels), shape (no peak and 
trough, based on wavelet decomposition), or multiple spatial peaks 
(waveforms are non-localized along the probe axis). The automated 
algorithm removed 94% of noise units, or 26% of total units. A final 
manual inspection step was used to remove an additional 2,140 noise 
units across all experiments (Extended Data Fig. 3).

Spike-sorting quality control. All units not classified as noise are 
packaged into Neurodata Without Borders (NWB) files for potential 
further analysis. Because different analyses may require different qual-
ity thresholds for defining inclusion criteria, we calculate a variety of 
metrics that can be used to filter units. These metrics are based on both 
the physical characteristics of the units’ waveforms71, or their isolation 
with respect to other units from the same recording (Extended Data 
Fig. 4a).

Firing rate: n/T, where n = number of spikes in the complete session 
and T = total time of the recording session in seconds.

Presence ratio: The session was divided into 100 equal-sized blocks; 
the presence ratio is defined as the fraction of blocks that include one 
or more spikes from a particular unit. Units with a low presence ratio 
are likely to have drifted out of the recording, or could not be tracked 
by Kilosort2 for the duration of the experiment.

Maximum drift: To compute the maximum drift for one unit, the peak 
channel was calculated from the top principal components of every 
spike. Next, the peak channel values are binned in 51-s intervals, and 
the median value is calculated across all spikes in each bin (assuming 
at least 10 spikes per bin). The maximum drift is defined as the dif-
ference between the maximum peak channel and the minimum peak 
channel across all bins. The average maximum drift across all units is 
used to identify sessions with a high amount of probe motion relative 
to the brain.

Waveform amplitude: The difference (in microvolts) between the 
peak and trough of the waveform on a single channel.

Waveform spread: Spatial extent (in μm) of channels in which the 
waveform amplitude exceeds 12% of the peak amplitude.

Waveform duration: Difference (in ms) of the time of the waveform 
peak and trough on the channel with maximum amplitude.

ISI violations: This metric searches for refractory period violations 
that indicate a unit contains spikes from multiple neurons. The ISI 
violations metric represents the relative firing rate of contaminating 
spikes. It is calculated by counting the number of violations of less 
than 1.5 ms, dividing by the amount of time for potential violations 
surrounding each spike, and normalizing by the overall spike rate. It 
is always positive (or 0), but has no upper bound. See ref. 72 for more 
details.

Signal-to-noise ratio: After selecting 1,000 individual spike wave-
forms on the channel with maximum amplitude, the mean waveform 
on that channel was subtracted. The signal-to-noise ratio (SNR) 
is defined as the ratio between the waveform amplitude and 2× 
the standard deviation of the residual waveforms73. Because this 
definition of SNR assumes that waveforms remain stable over time, 
changes in a unit’s waveform as a result of probe motion will cause 
this metric to be inaccurate. In addition, because it is only calcu-
lated for the peak channel, this metric does not necessarily reflect 
the overall isolation quality of a unit when taking into account all 
available information.

Isolation distance: The square of the Mahalanobis distance required 
to find the same number of ‘other’ spikes as the total number of spikes 
for the unit in principal component space74. Similarly to SNR, isolation 
distance is not tolerant to electrode drift, and changes in waveform 
shape over time can reduce the isolation distance calculated over the 
entire session.

d′: Linear discriminant analysis is used to find the line of maximum 
separation in principal component space. d′ indicates the separability 
of the unit of interest from all other units. See ref. 72 for more infor-
mation. This metric is not tolerant to electrode drift, and changes in 
waveform shape over time can reduce the value of d′ calculated over 
the entire session.

Amplitude cutoff: This metric provides an approximation of a unit’s 
false negative rate. First, a histogram of spike amplitudes is created, 
and the height of the histogram at the minimum amplitude is extracted. 
The percentage of spikes above the equivalent amplitude on the oppo-
site side of the histogram peak is then calculated. If the minimum 
amplitude is equivalent to the histogram peak, the amplitude cut-
off is set to 0.5 (indicating a high likelihood that more than 50% of 
spikes are missing). This metric assumes a symmetrical distribution 
of amplitudes and no drift, so it will not necessarily reflect the true 
false negative rate.

Nearest neighbours hit rate: For each spike belonging to the unit 
of interest, the four nearest spikes in principal-component space are 
identified. The ‘hit rate’ is defined as the fraction of these spikes that 
belong to the unit of interest. This metric is based on the ‘isolation’ 
metric from ref. 75. Again, electrode drift that alters waveform shape can 
negatively affect this metric without necessarily changing the isolation 
quality of a unit at any given time point.

Filtering of units on the basis of quality metrics and other criteria is 
illustrated in Extended Data Fig. 4b.



Data analysis
Receptive field analysis. The receptive field for one unit is defined 
as the 2D histogram of spike counts (quantified during the 250-ms 
stimulus presention) at each of 81 locations of the Gabor stimulus (9 × 
9 pixels, 10° separation between pixel centres, Extended Data Fig. 6d).

A chi-square test for independence was used to assess the presence 
of a significant receptive field. A chi-square test statistic was computed 
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lus presentation. A P value was then calculated for each unit by compar-
ing the test statistic against a null distribution of 1,000 test statistics, 
each computed from the unit’s responses after shuffling the locations 
across all presentations.

To compute the receptive field area and centre location, each 
receptive field was first smoothed using a Gaussian filter (σ = 1.0). The 
smoothed receptive field (RF) was thresholded at max(RF) – std(RF), 
a value that provided good agreement with the qualitative receptive 
field boundaries. The receptive field centre location was calculated 
on the basis of the centre of mass of the largest contiguous area above 
threshold, and its area was equivalent to its pixel-wise area multiplied 
by 100 degrees2 (Extended Data Fig. 6e).

Cross-correlation analysis. We measured functional interactions 
between pairs of units using CCGs28,29,76. CCGs were calculated for pe-
riods of full-field drifting grating stimuli (2-s stimulus presentation 
interleaved with 1-s grey period; orientations = [0, 45, 90, 135] degrees, 
temporal frequency = 2 cycles per second, spatial frequency = 0.04 
cycles per degree, contrast = 0.8) for units with mean firing rate greater 
than 2 Hz between 50 ms and 500 ms after stimulus onset.

The CCG is defined as:
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where M is the number of trials, N is the number of bins in the trial, xi
1 

and xi
2 are the spike trains of the two units on trial i, τ is the time lag 

relative to reference spikes, and λ1 and λ2 are the mean firing rates of 
the two units. The CCG is essentially a sliding dot product between two 
spike trains. θ(τ) is the triangular function which corrects for the over-
lap time bins caused by the sliding window. To correct for firing-rate 
dependence, we normalized the CCG by the geometric mean spike 
rate. An individually normalized CCG is computed separately for each 
drifting grating orientation (75 repeats per orientation) then averaged 
across 4 orientations to obtain the CCG for each pair of units.

A jitter-correction method was used to remove stimulus-locked cor-
relations and slow temporal correlations from the original CCG.

CCG _ = CCG − CCGjitter corrected original jittered

The jitter-corrected CCG was created by subtracting the expected 
value of CCGs produced from a resampled version of the original data-
set with spike times randomly perturbed ( jittered) within the jitter 
window28,29. The correction term (CCGjittered) is the true expected value 
which reflects the average over all possible resamples of the original 
dataset. CCGjittered is normalized by the geometric mean rate before 
subtracting from CCGoriginal. The analytical formula used to create a 
probability distribution of resampled spikes is provided in ref. 77. This 
method disrupted the temporal correlation within the jitter window, 
while maintaining the number of spikes in each jitter window and the 
shape of the peristimulus time histogram (PSTH) averaged across tri-
als. For our measurement, a 25-ms jitter window was chosen on the 

basis of previous studies28,30. This jitter-correction method removes 
both the stimulus-locked component of the response, as well as slow 
fluctuations larger than the jitter window.

A sharp peak was deemed significant if the maximum of 
jitter-corrected CCG amplitude within a ±10 ms window had a magni-
tude larger than sevenfold of the standard deviation of the CCG flanks 
(between ±50–100 ms from zero). All subsequent analysis was based 
on significant CCG sharp peaks.

A Wilcoxon rank-sum test was used to compare the distribution of 
CCG peak offsets between neighbouring areas (defined by the anatomi-
cal hierarchical score) and the distribution of CCG peak offset within an 
area. The significance test was performed within each mouse, and the 
P values were combined across 25 mice using Fisher’s method. V1–LM 
vs V1–V1, P = 0; LM–RL vs LM–LM, P = 1.9 × 10−5; RL–AL vs RL–RL, P = 2.4 
× 10−5; AL–PM vs AL–AL, P = 0.081; PM–AM vs PM–PM, P = 3.2 × 10−4.  
All between-area distributions are significantly different from the 
within-area distributions at the 5% confidence level, except for AL–PM.

Response latency. Response latency was calculated as the time to first 
spike (TFS). TFS was estimated in each trial by looking for the time of 
first spike 30 ms after stimulus onset. If no spike was detected within 
250 ms after stimulus onset, that trial was not included. The overall 
latency for each unit was defined as the median TFS across trials.

As a control, we calculated TFS using the same procedure, but dur-
ing the 1-s pre-stimulus interval with a mean-luminance grey screen. 
Under these conditions, TFS for individual areas was not correlated 
with anatomical hierarchy score (Pearson’s r = 0.57, P = 0.14), but was 
strongly negatively correlated with their baseline firing rates (Pearson’s 
r = –0.98, P = 0.00001; Extended Data Fig. 9b, c).

Modulation index. The stimulus modulation index (MI) reflects how 
spiking activity of each unit is modulated by the temporal frequency 
of the drifting grating stimulus34,35. It is defined as:

f
MI =

PS( ) − ⟨PS⟩
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where PS indicates the power spectral density of the PSTH, and denotes 
the averaged power over all frequencies; fpref is the preferred temporal 
frequency of the unit. This metric quantifies the difference between 
spiking response power at each unit’s preferred stimulus frequency 

f(PS( ))pref
 versus its averaged response power across frequencies (⟨PS⟩ )f . 

The power spectrum was computed using Welch’s method on the 10 
ms-binned PSTH for each unit’s preferred condition. MI values greater 
than 3 correspond to strong modulation of spiking at the stimulus 
frequency (indicative of simple-cell–like responses), whereas smaller 
MI values indicate less modulation by stimulus temporal frequency 
(indicative of complex-cell-like responses)78.

Intrinsic timescale and response decay timescale. We calculated in-
trinsic timescale using a method similar to that described previously13. 
We first extracted spike times for each unit during the 1 s pre-stimulus 
period before the onset of each full-field flash, and binned them in 
10-ms intervals. We then calculated the Pearson correlation between 
spike counts at each of 100 possible offsets, to fill the upper triangle of 
a 100 × 100 correlation matrix. We averaged the correlations along the 
diagonals of this matrix, and fit an exponential decay function to the 
first 50 points (500 ms), with the decay timescale bounded between 
1 and 1,000 ms. Units were only included in the overall average if the 
standard deviation of the estimated timescale parameter was less than 
100, and at least 100 spikes were used for fitting. The distribution of in-
trinsic timescales for each visual area is shown in Extended Data Fig. 9f.

We calculated the response decay timescale for each unit on the 
basis of binned spike counts during the 250-ms presentation period of 
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the full-field flash stimulus, with 10 ms temporal resolution. Using this 
data, we calculated a 2D autocorrelation matrix (scipy.signal.correlate) 
and averaged this matrix across trials. An exponential decay function 
was fit to the result, with the decay timescale bounded between 1 and 
1,000 ms. Units were only included in the overall average if the standard 
deviation of the estimated timescale parameter was less than 20, and 
at least 50 spikes were used for fitting. The distribution of response 
decay timescales for each visual area is shown in Fig. 3k.

Directionality score. We quantified the relative proportion of posi-
tive and negative CCG time lags with a ‘directionality score’ (DS). DS 
is defined as:

C C

C C
DS =

−

+
positive negative

positive negative

where Cpositive represents the number of functional connections (that 
is, number of pairwise significant CCG sharp peaks) with positive time 
lag from source to target area, and Cnegative represents the number of 
functional connections with negative time lag. The DS is bounded 
between −1 and 1. A positive value indicates that temporally leading 
connections predominate from source to target area, whereas a nega-
tive value indicates that lagging connections are more common from 
source to target area. We calculated a DS for the peak offset distribution 
between all pairs of areas, visualized as a matrix (Fig. 2e). Note that this 
metric alone does not make any specific assumption of feedforward 
or feedback connections, it only quantifies the relative number of 
positive and negative time lag connections between two areas. To com-
plement this measurement, we also quantified the asymmetry of the 
between-area time lags using the median of these distributions 
(Extended Data Fig. 7c, d). However, the median of the CCG time lag 
distribution in principle cannot reflect the shape of distribution, which 
influences the relative hierarchy (see simulation in Extended Data 
Fig. 8e, f).

Analysis of neural responses during the change detection task. For 
each unit, spike density functions (SDFs) were calculated by convolving 
spike times relative to each image change or the image flash preceding 
image change (‘pre-change’) with a causal exponential filter (decay time 
constant = 5 ms). The firing rate during a baseline window 250 ms im-
mediately preceding image presentation was subtracted from each SDF. 
Mean SDFs were then calculated by averaging across all image change 
or pre-change presentations. Units were included in further analysis 
if their mean firing rate was greater than 0.1 spikes per second and the 
peak of the mean SDF after image change was greater than 5 times the 
standard deviation of the mean SDF during the baseline window.

Responses to image change and pre-change were calculated as the 
mean baseline-subtracted firing rate during the response window. 
We defined the change modulation index (Fig. 4f) for each unit as the 
difference between the mean response to each image on change and 
pre-change presentations divided by their sum, and took the average 
of this value across all eight images. This analysis was repeated for 
data collected during a ‘passive’ session during which the lick spout 
was retracted and the exact sequence and timing of images viewed 
during the behavioural task were replayed.

For comparison of decoder predictions and mouse behaviour 
(Fig. 4g, h), we trained random forest classifiers with fivefold cross 
validation to distinguish population activity associated with change 
or pre-change image presentations. The input to the decoder for each 
trial was a vector of length neurons × time samples, formed by concat-
enating the SDFs of each neuron. Using these features, the decoder is 
trained to predict whether each trial was a change or pre-change image 
presentation. For each brain region and task session we used activ-
ity from subsamples of 20 neurons, beyond which decoder accuracy 
improvements were minimal (Extended Data Fig. 9o). The number of 

subsamples varied depending on the number of neurons recorded 
such that there was a greater than 99% chance that each neuron was 
included in at least one subsample. The result for each experiment was 
the median parameter value (for example, decoder accuracy) across 
subsamples. The average output of the ensemble of random forest 
classifiers (n = 100) results in a probability predicting whether a given 
trial was an image change. We compared these values to the response 
of the mouse on each trial (hit or miss) using a Pearson correlation, and 
then averaged across experiments for each region to generate Fig. 4h.

Eye and pupil tracking. A single, universal eye tracking model was 
trained in DeepLabCut79, a ResNET-50 based network, to recognize up 
to 12 tracking points each around the perimeter of the eye, the pupil, 
and the corneal reflection. A published numerical routine80 was used 
to fit ellipses to each set of tracking points. For each ellipse, the fol-
lowing parameters were calculated: centre coordinates, half-axes and 
rotation angle. Fits were performed on each frame if there were at least 
six tracked points and a confidence of l > 0.8 as reported by the output 
of DeepLabCut. For frames in which there were fewer than 6 tracked 
points above the confidence threshold, the ellipse parameters were 
set to not-a-number (NaN).

The training dataset contained two sources of hand-annotated data: 
(1) Three frames from each of 40 randomly selected movies. On each 
frame, eight points were annotated around the eye and pupil. The centre 
of the corneal reflection was annotated with a single point. (2) 4,150 
frames with the pupil and corneal reflections annotated with ellipses.

Across 50 mice with processed eye-tracking videos, we used the 
gaze_mapping module of the AllenSDK to translate pupil position into 
screen coordinates (in units of degrees). On average, 95% of gaze loca-
tions fell within 6.4 ± 2.1° of the mean, with a maximum of 13.6°.

Anatomical hierarchy analysis. A detailed description of the unsuper-
vised construction of a data-driven anatomical hierarchy is available in 
ref. 3. Here we provide a summary of how the anatomical hierarchy of the 
six visual cortical areas (V1, LM, AL, RL, PM and AM) and two thalamic 
nuclei (LGN and LP) was constructed on the basis of the anatomical 
connectivity. Specifically, the anatomical hierarchy was uncovered on 
the basis of cortical lamination patterns of the structural connections 
among the cortical and thalamic regions of interest, obtained from 
Cre-dependent viral tracing experiments.

To classify laminar patterns of cortico-cortical (CC) and 
thalamo-cortical (TC) connections and to assign a direction to each 
cluster of laminar patterns, we used a large-scale dataset on cell 
class-specific connectivity among all 37 cortical areas and 24 thalamic 
nuclei defined using 15 Cre driver transgenic lines (849 cortical and 81 
thalamic experiments; 7,063 unique source-target-Cre line combina-
tions), available in ref. 3. For each transgenic line, the strength and layer 
termination pattern of the connections were quantified on the basis 
of relative layer density, the fraction of the total projection signal in 
each layer scaled by the relative layer volumes in that target. For the 
connections above a threshold (10−1.5), unsupervised clustering of the 
layer termination patterns was performed, yielding nine clusters of 
distinct cortical layer termination patterns of CC and TC connections. 
See figure 5a, b of ref. 3 for a schematic of the nine types of cortical 
target lamination pattern.

Following the classification of the nine clusters of the laminar pat-
terns, an unsupervised method was used to simultaneously assign a 
direction to a cluster type and to construct a hierarchy by maximizing 
the self-consistency of the obtained hierarchy. The mapping function 
MCC maps a type of CC connection cluster (C ∈ {1, … 9Ti j,

}, where CTi j,

denotes the layer termination pattern of the connection from area j to 
area i for Cre-line T) to either feedforward (MCC = 1) or feedback (MCC = −1)  
type, that is, MCC:{1,…,9}→{−1,1}. Similarly, the mapping function MTC of 
the thalamocortical layer termination types to either direction is defined 
as MTC:{1,…,9}→{−1,1}. By constructing the hierarchy of all 37 cortical 



areas and 24 thalamic nuclei, the optimal mapping function that max-
imizes the self-consistency measured by the global hierarchy score was 
found3 (refer to equations 5 and 10 of ref. 3 to see how the global hierar-
chy score was defined for CC and TC connections, respectively.). Spe-
cifically, the optimal mapping for CC connections assigns connections 
of cluster 2, 6 and 9 to one direction (feedback) and 1, 3, 4, 5, 7 and 8 to 
the opposite direction (feedforward). For TC connections, the most 
self-consistent hierarchy that maximizes the global hierarchy score is 
obtained when connections of cluster 2 and 6 correspond to feedback 
and the rest to feedforward patterns (figure 6a of ref. 3).

With these mapping functions MCC and MTC obtained from the con-
struction of the all-area hierarchy (figure 6a of ref. 3), the hierarchical 
organization of the six visual cortical areas (V1, LM, AL, RL, PM and AM) 
and the two thalamic nuclei (LGN and LP) was constructed using only the 
connections among these eight regions. We first uncovered the cortical 
hierarchy using the intra-cortical connections among the six cortical 
areas: V1, LM, AL, RL, PM, and AM (240 unique ‘source-target-Cre line’ 
combinations). The initial hierarchical position of a cortical area is 
defined as:
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where the first term describes the average direction of connections to 
area i, and thus represents the hierarchical position of the area as a 
target. The second term, on the other hand, represents the average 
direction of connections from area i, depicting the hierarchical position 
of the area as a source. To account for the Cre-line-specific bias, the 
Cre-dependent confidence measure, T M Cconf( ) = 1 − |⟨ ( )⟩ |T i jCC ,i j,

 is 
included. The initial hierarchy score (Hi

0) of each area i then is iterated 
using a two-step iterative scheme until the fixed point is reached:
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where n refers to iterative steps.
After hierarchical positions of cortical areas are found based on CC 

connections, the hierarchical positions of the LGN and LP relative to 
the cortical areas were computed by including TC connections from the 
LGN and LP to the six visual cortical areas (25 unique ‘source-target-Cre 
line’ combinations). Because thalamic areas are always the source in 
TC connections, the initial hierarchy score of each thalamic area i is 
defined by the average direction of connections from the area:
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The parameters Nff and Nfb refer to the numbers of feedforward and 
feedback thalamocortical connections, respectively. Once the initial 
positions of the thalamic areas in the hierarchy are obtained using 
equation (4), hierarchy scores of thalamic and cortical areas are iterated 
until the fixed points are reached, using a full mapping function MCC+TC
that combines MCC and MTC, as done with the cortical hierarchy based 
on CC connections only (equations (2) and (3)).

To test the significance of the hierarchy levels of these areas, we 
generated 100 sampled connectivity data of the same size via boot-
strapping, and computed the hierarchy scores of the eight regions 
using the bootstrapped connectivity data. We performed Wilcoxon 
paired signed rank-sum tests on these scores, showing that hierarchy 
levels of LM and RL cannot be meaningfully distinguished (P = 0.08) but 
the rest of the areas are at significantly distinct hierarchical positions, 
with the 5% confidence level.

Network model simulation. To quantitatively evaluate the degree of 
‘hierarchy’ of our measured functional network and to compare it to 
parallel network architectures, we performed a series of model simula-
tions. We examined how the functional connectivity matrix would 
change with different network structures and calculated a ‘total hier-
archy score’ (THS) to reflect the degree of hierarchy. The model is a 
simple graph model that assumes each area is a node, and the connec-
tion strength and directionality between nodes (feedforward and 
feedback connections) are defined by a simulated distribution of CCG 
peak offsets between the two areas. The peak offset distributions are 
approximated by Gaussian distributions, because most of the distribu-
tions of between area peak offsets are Gaussian-like (normality test 
with scipy.stats.normaltest; with P > 0.05). The distribution of offsets 
in the actual data has a mean of 1.1 ± 0.4 ms (n = 5 pairs of neighbouring 
areas) and a standard deviation of 3.7 ± 0.2 ms (n = 15 pairs of areas; 
Extended Data Fig. 7a). Inspired by the data, we simulated peak offset 
distributions between neighbouring levels using Gaussian distributions 
with σ = 4 ms and μ = 1 ms (μ = L L−i j between hierarchical levels i and j). 
The mean and standard deviation of the Gaussians define the direc-
tionality score (DS), which reflects the relative proportion of measured 
feedforward connections between two areas. When the Gaussian has 
a mean of 0, the DS is 0, which means the two nodes reside at the same 
level of the graph, while a DS of 1 indicates unidirectional information 
flow from the lower to the higher node.

In Extended Data Fig. 8a, we first quantified DS on the basis of the 
peak offset distributions from the experimental data. The left panel 
shows the distribution of peak offset from V1 to LM, between the cut-off 
times of ±10 ms that we impose to minimize multi-synaptic connec-
tions. In the middle is the functional connectivity matrix with the DS 
between areas (values range from −1 to 1). On the right is the mean of 
DS from each source area to all target areas. The mean DS gradually 
decreased along the anatomical hierarchy. The maximum difference of 
this trajectory (here between V1 and AM) is defined as the total hierarchy 
score (THS) of the network, which is 0.89 for the measured functional 
network in our data. For our simulations, we first tested a fully recur-
rent network in which all nodes have unbiased reciprocal connections 
(Extended Data Fig. 8b). This network has a DS connectivity matrix with 
all zeroes and a THS of 0. Then, we simulated a two-level, one-to-all 
network that models parallel feedforward projections from V1 to all 
other areas (Extended Data Fig. 8c), but with all other areas recurrently 
connected to each other in an unbiased way. This network generated a 
THS of 0.15. Next, we simulated a three-level network, assuming V1 is at 
the lowest level, RL, LM and AL are at the second level, AM and PM are 
at the top level (Extended Data Fig. 8d). This network generated a THS 
of 0.38. Next, we simulated a ladder hierarchical network, in which the 
mean of peak offset distribution between two areas is determined by 
their position difference in the hierarchy (Li −Lj) (such that the mean 
time lag between neighbouring levels is 1 ms). We first tested a network 
with parameters constrained by our data (σ = 4 ms and μ = Li −Lj ms) 
(Extended Data Fig. 8e). The resulting DS matrix showed a gradient very 
similar to the real data, with a THS equal to 0.88. To push the network 
to an extreme, we tested a strongly feedforward network by defin-
ing a narrow Gaussian (σ = 1) to produce fewer feedback connections 
(Extended Data Fig. 8f). We found the DS matrix was more saturated 
and the THS value is 1.54. In theory, the maximum THS is 2. Therefore, 
our measured network is more hierarchical than a ‘one-to-all’ network 
and less hierarchical than a purely feedforward, hierarchical network.

Other statistical methods. To quantify the correlation between the 
mean value of each metric and the anatomical hierarchy score, both 
the Pearson correlation coefficient (scipy.stats.pearsonr) and Spear-
man’s rank correlation coefficient (scipy.stats.spearmanr) were used.

To test for significant differences between pairs of areas, a Wil-
coxon rank-sum statistic was used (scipy.stats.ranksum), with each 
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unit considered an independent sample. Correction for multiple com-
parisons was performed using the Benjamini–Hochberg false discovery 
rate (statsmodels.stats.multitest.multipletests).

Data processing pipeline
Data for each session were uploaded to the Allen Institute Laboratory 
Information Management System (LIMS). Each dataset was run through 
the same series of processing steps using a set of project-specific work-
flows. Out of 61 sessions entering the processing pipeline, 58 resulted 
in successful NWB file generation. The three processing failures were 
due to mismatches in session identifiers or expected file structures 
that prevented the workflow from completing.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The data from all 58 passive viewing experiments used to generate 
main text Figs. 1–3 is available for download in Neurodata Without 
Borders (NWB) format via the AllenSDK. Example Jupyter Notebooks 
for accessing the data can be found at https://allensdk.readthedocs.
io/en/latest/visual_coding_neuropixels.html.

The Neurodata Without Borders files are also available on the DANDI 
Archive (https://gui.dandiarchive.org/#/dandiset/000021; https://gui.
dandiarchive.org/#/dandiset/000022)) and as an AWS public dataset 
(https://registry.opendata.aws/allen-brain-observatory/).

The metrics table used to generate Fig. 4e–h (active behaviour experi-
ments) is available in the GitHub repository for this manuscript (https://
github.com/AllenInstitute/neuropixels_platform_paper).

Code availability
Code for the following purposes are available from these reposito-
ries: generating manuscript figures, https://github.com/AllenIn-
stitute/neuropixels_platform_paper; data pre-processing and unit 
metrics, https://github.com/AllenInstitute/ecephys_spike_sort-
ing; spike-sorting, https://github.com/mouseland/Kilosort2; OPT 
post-processing, https://github.com/AllenInstitute/AIBSOPT; calcu-
lating stimulus metrics, https://github.com/AllenInstitute/AllenSDK; 
data acquisition, https://github.com/open-ephys/plugin-GUI, https://
github.com/open-ephys-plugins/neuropixels-3a, https://github.com/
open-ephys-plugins/neuropixels-PXI.

The following open-source software was used: NumPy81, SciPy82, 
IPython83, Matplotlib84, Pandas85, xarray86, scikit-learn87, VTK88, Dee-
pLabCut79,89, statsmodels90, allenCCF70, tifffile (https://pypi.org/pro-
ject/tifffile/), Jupyter (https://jupyter.org/), pynwb (https://pynwb.
readthedocs.io/en/stable/).
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Extended Data Fig. 1 | Pipeline procedures. a–f, Summary of procedures 
involved in each step of the pipeline. g, Rig for parallel recording from six 
Neuropixels probes. Scale bar, 10 cm. h, Example retinotopic map used for 
targeting probes to six cortical visual areas. Scale bar, 1 mm. i, Image of 
Neuropixels probes during an experiment, with area boundaries from h 
overlaid in orange. Probe tips are marked with white dots. Scale bar, 1 mm. j, Box 
plot of the number of units recorded per area per experiment, after filtering 

based on ISI violations (<0.5), amplitude cutoff (<0.1) and presence ratio 
(>0.95) (see Methods and Extended Data Fig. 4 for quality metric definitions 
and distributions). Box plot edges represent upper and lower quartiles; centre 
line represents the median; whiskers represent 5th to 95th percentile range; 
open circles represent any data points beyond the edge of the whiskers.  
k, Histogram of the number of simultaneously recorded cortical and thalamic 
visual areas per experiment (n = 58 experiments).



Extended Data Fig. 2 | Pipeline quality control. a–f, Major quality control metrics for each pipeline step, with examples of passing and failing experiments.  
The number of mice failing quality control at each stage is shown on the right.
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Extended Data Fig. 3 | Data processing steps. a, Data from the Neuropixels 
probe is split at the hardware level into two separate streams for each 
electrode: spike band and LFP band. b, The spike band passes through offset 
subtraction, median subtraction and whitening steps before sorting. The 
resulting data can be viewed as an image, with dimensions of time and 
channels, and colours corresponding to voltage levels. c, The LFP data are 
down sampled to 1.25 kHz and 40 μm channel spacing before packaging.  

d, We use the Kilosort2 to match spike templates to the raw data. The output of 
this algorithm can be used to reconstruct the original data using information 
about template shape, times and amplitudes. e, The spike and LFP data are 
packaged into Neurodata Without Borders (NWB) 2.0 files. f, The outputs of 
Kilosort2 are passed through a semi-automated quality control procedure to 
remove units with artefactual waveforms. Only units with obvious spike-like 
characteristics are used for further analysis.



Extended Data Fig. 4 | Unit quality metrics. a, Density functions for twelve 
quality control metrics, plotted for units in cortex, hippocampus, thalamus 
and midbrain, aggregated across experiments. Default AllenSDK thresholds 
are shown as dotted lines. b, Unit selection flowchart for generating 
manuscript figures. Note that we do not use the default AllenSDK filters in this 
work, but instead use a receptive field P value of 0.01 as the primary metric for 
selecting units for analysis. CCFv3 structure labels used for region 

identification are as follows: cortex (VISp, VISl, VISrl, VISam, VISpm, VISal, 
VISmma, VISmmp, VISli, VIS), thalamus (LGd, LD, LP, VPM, TH, MGm, MGv, MGd, 
PO, LGv, VL, VPL, POL, Eth, PoT, PP, PIL, IntG, IGL, SGN, VPL, PF, RT), 
hippocampal formation (CA1, CA2, CA3, DG, SUB, POST, PRE, ProS, HPF), 
midbrain (MB, SCig, SCiw, SCsg, SCzo, SCop, PPT, APN, NOT, MRN, OP, LT, RPF), 
other/nonregistered (CP, ZI, grey).
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Extended Data Fig. 5 | Aligning units with the Common Coordinate 
Framework (CCFv3). a, After each experiment, the brain is removed and 
cleared using a variant of the iDISCO method. b, The cleared brain is imaged at 
400 rotational angles using a custom-built optical projection tomography 
microscope. c, We generated an isotropic 3D volume from rotational images 
using a computational tomography algorithm. d, Key points from the CCFv3 
template brain are manually identified in each individual brain. e, Points along 
each fluorescently labelled probe track are manually identified in the volume. 
Using the key points from d, we define a warping function to translate points 
along the probe axis into the Common Coordinate Framework. f, We then align 

the regional boundaries to boundaries in the physiological data, primarily the 
decrease in unit density at the border between the cortex and hippocampus, 
and between the hippocampus and thalamus. The shaded area represents unit 
density on each recording site, and pink dots represent low-frequency LFP 
power (<10 Hz) along the probe axis. g, Finally, units in the database are mapped 
to a 3D location in the CCFv3 and are assigned a structure label. Units in cortex 
are also assigned a relative depth (0, surface; 1, white matter) and a layer label 
(L1, L2/3, L4, L5 or L6), on the basis of the annotation of the CCFv3 template 
volume (10-μm resolution).



Extended Data Fig. 6 | Details of the visual stimulus set and receptive field 
mapping procedure. a, Example frames from each type of stimulus. Green 
arrows indicate direction of motion. The natural scene image is shown 
illustrative purposes. The natural scene images shown to the mice are from 
refs. 51 and 52. b, Timing diagram for visual stimulus set #1, known as ‘Brain 
Observatory 1.1’. c, Timing diagram for visual stimulus set #2, known as 
‘Functional Connectivity’. d, Receptive field mapping used 20° diameter 
drifting gratings flashed for 250 ms in each of 81 randomized locations on the 
screen. A spike raster for one unit shows the timing of spikes on each of 45 trials 

with the stimulus at a particular location. Collapsing over trials yields a 
peristimulus time histogram for each location. Collapsing over time yields a 
spike count for each spatial bin. A matrix of spike counts represents the 
receptive field for this unit. e, To calculate receptive field properties, the 
receptive field is first smoothed with a Gaussian filter, and all pixels above a 
threshold value are selected. The centre of mass of the above-threshold pixels 
indicates the receptive field location, while the total number of 
above-threshold pixels indicates the area. These processing steps are shown 
for 25 receptive fields randomly chosen from one experiment.
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Extended Data Fig. 7 | Functional connections between visual cortical 
areas. a, Peak offset distributions aggregated across 25 mice for each area 
combination, during drifting gratings presentation. The total number of pairs 
(n) is labelled in each sub-panel. Dashed black line indicates zero time lag. 
Dashed red line indicates the median of the distribution. b, Fraction of within- 
and between-area unit pairs exhibiting sharp peaks, out of all simultaneously 
recorded pairs. c, Combined median of peak offsets across mice (averaged 
across mice; n = 25 mice in total) for each pair of cortical areas. d, Correlation 
between the median peak offset and the difference in hierarchy scores among 

21 pairs (lower triangle and diagonal of the matrix). e, Relationship between 
average 3D Euclidean distance between units simultaneously recorded in each 
pair of areas (following registration to the CCFv3) and their hierarchy score 
difference. rP, Pearson correlation coefficient; rS, Spearman’s rank correlation 
coefficient. f, Average number of sharp peak connections per mouse for jitter-
corrected CCGs calculated during spontaneous activity (30 min grey screen 
period). Pixels masked with grey indicate no sharp peaks were detected.  
g, Average directionality score across mice during spontaneous activity.



Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Simulation of functional connectivity profiles for 
different network structures. a, Directionality score (DS) and total hierarchy 
score calculated from actual data. Left, an example distribution of peak offsets 
between V1 (source) and LM (target); middle, DS matrix for all area combinations;  
right, mean DS for each source area to all target areas, which gradually 
decreases along the hierarchy. The maximum difference of the mean DS across 
areas represents the total hierarchy score for the real network. b–f, Simulations 
based on different hypothetical network structures. Because the standard 
deviation of peak offset distribution in our measured CCG time lag distribution 
is 3.7 ± 0.2 ms and the median CCG time lag of neighbouring areas is 1.1 ± 0.4 ms, 
we simulated Gaussian distributions of the model peak offsets with σ = 4 and 
μ = 1 for neighbouring hierarchical levels (μ = L L−i j between hierarchical levels  

i and j). See Methods for additional details of this simulation. b, A fully 
recurrent network where all nodes (areas) are at the same hierarchical level and 
have unbiased reciprocal connections (μ = 0). c, A two-level, one-to-all network 
that models parallel feedforward projections from V1, with all other areas 
recurrently connected with one another in an unbiased way. d, A three-level 
network, assuming V1 at the lowest level, RL, LM and AL at the second level, AM 
and PM at the top level. e, A six-level hierarchical network with each area at a 
distinct hierarchical level. Network parameters were constrained by real data 
(σ = 4 and μ = 1 for neighbouring hierarchical levels, and μ = L L−i j between any 
hierarchical levels i and j). f, A six-level hierarchical network with a narrow 
distribution of peak offsets (σ = 1) that simulates a paucity of feedback 
connections.



Extended Data Fig. 9 | Statistics and additional analysis of hierarchy 
measures. a, P values for pairwise comparisons of time to first spike between 
areas (two-sided Wilcoxon rank–sum test with Benjamini-Hochberg false 
discovery rate correction). b, Comparison between time-to-first-spike 
measured in response to the onset of the flash stimulus (‘flash’) versus during 
the inter-stimulus interval which corresponds to spontaneous firing 
(‘spontaneous’). The colour scheme is the same as in Fig. 4; error bars represent 
mean ± 95% confidence intervals; n = 15,713 units from 58 mice. c, Relationship 
between time-to-first spike and mean firing rate for a given area, either in 
response to the flash stimulus, or during the inter-trial interval (‘spontaneous’). 
d, P values for pairwise comparisons of receptive field size between areas. 
Colour scale is the same as in a. e, P values for pairwise comparisons of 
modulation index between area. Colour scale is the same as in a. f, Distribution 
of intrinsic timescale across units in each of 8 areas. g, Correlation between 
mean intrinsic timescale and anatomical hierarchy score. The absence of a 
significant correlation is inconsistent with the findings from ref. 13, in which it 
was shown that intrinsic timescale increases with hierarchical level in primates. 
This discrepancy may stem from differences between mouse and primate 

neocortex, or the fact that the areas we have recorded do not span the full range 
of the mouse cortical hierarchy. In addition, it is known that standard 
exponential fitting procedures produce biased and unreliable timescale 
estimates, which may account for the null result we observed91. h, P-values for 
pairwise comparisons of response decay timescales between areas. Colour 
scale is the same as in a. i, Distribution of overall firing rates for all units in each 
area. j, Correlation between mean firing rate and anatomical hierarchy score.  
k, Relationship between change modulation index and anatomical hierarchy 
score, grouped by hit and miss trials. l, Relationship between pre-change 
response and anatomical hierarchy score, grouped by active and passive trials. 
m, Relationship between change response and anatomical hierarchy score, 
grouped by active and passive trials. n, Relationship between baseline firing 
rate and anatomical hierarchy score, grouped by active and passive trials.  
o, Decoder accuracy as a function of number of neurons used for decoding, 
averaged across all brain regions and behaviour sessions. p, Decoder accuracy 
for each brain region (mean ± s.e.m., averaged across sessions) is not correlated 
with the anatomical hierarchy score. rP, Pearson correlation coefficient; 
rS, Spearman’s rank correlation coefficient.
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Extended Data Fig. 10 | See next page for caption.



Extended Data Fig. 10 | Layer-wise analysis. a, Distribution of unit depths by 
area. 0 = surface, 1 = white matter. Normalized depth is measured along lines 
normal to the cortical surface (‘cortical streamlines’), rather than distance 
along the probe. b, Time-to-first-spike, receptive field area, modulation index, 
and response decay timescale analysed separately for each cortical layer. 
Colours are the same as those used in Fig. 4. Error bars represent mean ± 95% 
bootstrap confidence intervals. On average, in comparison to deep layers  
(5 and 6), superficial layers (2/3 and 4) had an earlier time to first spike  
(2.59 ms difference, P = 2.7 × 10−19, two-sided Wilcoxon rank-sum test),  
smaller receptive fields (109° difference, P = 1.1 × 10−33), higher modulation 
index (0.09 MI difference, P = 5.0 × 10−23), and faster response decay timescale 

(6.6 ms difference, P = 3.8 × 10−33). The presence of slightly earlier spikes in L2/3 
than L4 of V1 is probably due to the existence of direct connections from LGN to 
L2/3 of this area92. rP, Pearson correlation coefficient; rS, Spearman’s rank 
correlation coefficient. c, Average number of sharp peak pairs for each area 
and layer combination. Units in each area are bi-partitioned into superficial 
(layers 2–4) and deep layers (layers 5–6). d, Directionality score (averaged 
across mice) as an indicator of feedforward and feedback asymmetry.  
Areas ordered by hierarchy and layers arranged from superficial to deep.  
e, Directionality score based on average within-layer and between-layer 
distributions in d; superficial layers tend to drive deep layers within a cortical 
area.
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