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Abstract Temporal continuity of object identity is a feature of natural visual input and is

potentially exploited – in an unsupervised manner – by the ventral visual stream to build the neural

representation in inferior temporal (IT) cortex. Here, we investigated whether plasticity of individual

IT neurons underlies human core object recognition behavioral changes induced with unsupervised

visual experience. We built a single-neuron plasticity model combined with a previously established

IT population-to-recognition-behavior-linking model to predict human learning effects. We found

that our model, after constrained by neurophysiological data, largely predicted the mean direction,

magnitude, and time course of human performance changes. We also found a previously

unreported dependency of the observed human performance change on the initial task difficulty.

This result adds support to the hypothesis that tolerant core object recognition in human and non-

human primates is instructed – at least in part – by naturally occurring unsupervised temporal

contiguity experience.

Introduction
Among visual areas, the inferior temporal (IT) cortex is thought to most directly underlie core visual

object recognition in human and non-human primates (Ito et al., 1995; Rajalingham and DiCarlo,

2019). For example, simple weighted sums of IT neuronal population activity can accurately explain

and predict human and monkey core object recognition (COR) performance over dozens of such

tasks (Majaj et al., 2015). Moreover, direct suppression of IT activity disrupts COR behavior

(Afraz et al., 2015; Rajalingham and DiCarlo, 2019). These results were found in the face of signifi-

cant variation in object latent variables including size, position, and pose, and the high performance

of the simple IT readout (weighted sum) rests on the fact that many individual IT neurons show high

tolerance to those variables (DiCarlo et al., 2012; Hung et al., 2005; Li et al., 2009), reviewed by

DiCarlo et al., 2012.

But how does the ventral stream wire itself up to construct these highly tolerant IT neurons? Simu-

lated IT ‘neurons’ in the deep layers of artificial neural networks (ANNs) have such tolerance and pro-

vide quite accurate approximations of the adult ventral visual stream processing (Khaligh-

Razavi and Kriegeskorte, 2014; Rajalingham et al., 2018; Yamins et al., 2014). However, those

ANNs are produced by training with millions of supervised (labeled) training images, an experience

regime that is almost surely not biologically plausible over evolution or postnatal development. That

simple fact rejects all such ANNs as models of the construction of IT tolerance, regardless of whether
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or not the brain is executing some form of backpropagation-instructed plasticity (Lillicrap et al.,

2020; Rumelhart et al., 1986). So the question remains open: how does the ventral stream wire

itself up to construct a tolerant IT with minimal supervision?

The temporal stability of object identity under natural viewing (i.e., objects do not rapidly jump in

and out of existence) has been proposed as a key available source of unsupervised information that

might be leveraged by the visual system to construct neural tolerance, even during adulthood (Föl-

diák, 1991; Hénaff et al., 2019; Rolls and Stringer, 2006; Wallis et al., 2009; Wallis et al., 2009;

Wiskott and Sejnowski, 2002). Consistent with this view, psychophysical results from human sub-

jects show that unsupervised exposure to unnatural temporal contiguity experience (i.e., laboratory

situations in which object do jump in and out of existence) reshapes position tolerance (Cox et al.,

2005), pose tolerance (Wallis and Bülthoff, 2001), and depth illumination tolerance (Wallis et al.,

2009) as measured at the behavioral level. Similarly, neurophysiological data from adult macaque IT

show that unsupervised exposure to unnatural temporal contiguity experience reshapes IT neuronal

position and size tolerance (Li et al., 2009; Li and DiCarlo, 2008; Li and DiCarlo, 2010), in a man-

ner that is qualitatively consistent with the human behavioral data.

Taken together, our working hypothesis is that the ventral visual stream is under continual reshap-

ing pressure via unsupervised visual experience, that such experience is an important part of the

construction of the tolerant representation that is ultimately exhibited at the top level of the ventral

stream (IT), that the IT population feeds downstream causal mechanistic chains to drive core object

discrimination behavior, and that the performance on each such behavioral tasks is well approxi-

mated by linear readout of IT (Hung et al., 2005; Majaj et al., 2015).

However, there is a key untested prediction in this working hypothesis: is the single neuronal plas-

ticity in adult monkey IT quantitatively consistent with the adult human behavioral changes resulting

from unsupervised temporal contiguity experience? In this study, we chose to focus on testing that

missing link as it was far from obvious that it would hold up. In particular, the prior IT neurophysiol-

ogy work was with basic-level objects and produced seemingly large changes (~25% change in IT

eLife digest A bear is a bear, regardless of how far away it is, or the angle at which we view it.

And indeed, the ability to recognize objects in different contexts is an important part of our sense of

vision. A brain region called the inferior temporal (IT for short) cortex plays a critical role in this feat.

In primates, the activity of groups of IT cortical nerve cells correlates with recognition of different

objects – and conversely, suppressing IT cortical activity impairs object recognition behavior.

Because these cells remain selective to an item despite changes of size, position or orientation, the

IT cortex is thought to underly the ability to recognise an object regardless of variations in its visual

properties. How does this tolerance arise?

A property called ‘temporal continuity’ is thought to be involved – in other words, the fact that

objects do not blink in and out of existence. Studies in nonhuman primates have shown that

temporal continuity can indeed reshape the activity of nerve cells in the IT cortex, while behavioural

experiments with humans suggest that it affects the ability to recognize objects. However, these two

sets of studies used different visual tasks, so it is still unknown if the cellular processes observed in

monkey IT actually underpin the behavioural effects shown in humans. Jia et al. therefore set out to

examine the link between the two.

In the initial experiments, human volunteers were given, in an unsupervised manner, a set of

visual tasks designed similarly to the previous tests in nonhuman primates. The participants were

presented with continuous views of the same or different objects at various sizes, and then given

tests of object recognition. These manipulations resulted in volunteers showing altered size

tolerance over time. Aiming to test which cellular mechanism underpinned this behavioural effect,

Jia et al. built a model that simulated the plasticity of individual IT cells and the IT networks, to

predict the changes of object recognition observed in the volunteers. A high predictability of the

model revealed that the plasticity in IT cortex did indeed account for the behavioral changes in the

volunteers. These results shed new light on the role that temporal continuity plays in vision, refining

our understanding of the way the IT cortex helps to assess the world around us.
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selectivity per hour of exposure in Li and DiCarlo, 2010), and the prior human behavioral work was

with subordinate-level objects and produced significant, but subtle, changes in behavior (e.g., ~3%

performance change in Cox et al., 2005). Moreover, if we found that the link did not hold, it would

call into question all of the elements of the overall working hypothesis (especially IT’s relationship to

COR behavior,and/or the importance of unsupervised plasticity to the IT representation). Thus,

either result would be important.

To test whether our working hypothesis is quantitatively accurate over the domain of unsuper-

vised temporal contiguity-induced plasticity, we sought to build a model to predict the changes in

human object discrimination performance that should result from temporally contiguity experience-

driven changes in IT neuronal responses. This model has three components: (1) a generative IT

model (constrained by prior IT population response; Majaj et al., 2015) that approximates the IT

population representation space and can thus simulate the IT population response to any image of

the objects (within the space) with variation in size; (2) an unsupervised plasticity rule (constrained by

prior IT neural plasticity data; Li and DiCarlo, 2010) to quantitatively describe and predict firing rate

(FR) change of single IT neurons resulting from temporally contiguous pair of experienced images

and can thus be used to update the simulated IT population representation; and (3) an IT-to-COR-

behavior-linking model (learned weighted sums, previously established by Majaj et al., 2015) to pre-

dict behavioral discrimination performance from the state of the IT (simulated) population both

before and after each epoch of unsupervised experience.

To overcome the limitation of non-overlapping tasks in previous psychophysics and neurophysiol-

ogy studies and to extend prior psychophysical work, we carried out new human behavioral experi-

ments. Specifically, we measured the progression of changes in size-specific human object

discrimination performance that resulted from unsupervised temporal contiguity experience using

the same exposure paradigm as the prior monkey neurophysiology work (Li and DiCarlo, 2010). We

did not use the exact same images as prior work, but we expected the model to still make accurate

predictions of all behavioral changes. We made these behavioral measurements for a wide range of

object discrimination tasks, ranging from subordinate (specifically different face objects) to basic

level.

Because humans make sensory-independent mistakes due to inattentional state, these sensory-

independent random choices (referred to as lapse rate) set a ceiling in the measurable human behav-

ioral performance (Prins, 2012; Wichmann and Hill, 2001). When tasks are in the saturated regime,

it is hard to detect any learning effect as any changes in sensory representation would be hidden by

the behavioral ceiling (see later). Therefore, we focused our psychophysical study in the mid-range

of task difficulty where learning effects can be measured. However, this meant that the task difficulty

in human psychophysics could not be in the basic object regime where the neural data were col-

lected. Thus, to make behavioral predictions from the neural data, we took advantage of the overall

model to build this bridge: we first tuned the unsupervised plasticity rule by neural data with basic-

level object images (Li and DiCarlo, 2010); we then used a generative IT model – capable of simu-

lating the response of each artificial IT neuron for a wide range of image discriminability levels – to

make quantitative predictions of behavioral change in the regime where the human behavioral learn-

ing effects can be readily measured.

Indeed, our behavioral tests revealed a strong dependency of learning effect on the initial task

difficulty, with initially hard (d’ < 0.5) and initially easy (d’ > 2.5) COR tasks showing smaller mea-

sured learning effects than COR tasks of intermediate initial difficulty. We found that our overall

model was quite accurate in its predictions of the direction, magnitude, and time course of the

changes in measured human size tolerance in the regime where behavioral effects were readily mea-

sured for all of the tested unsupervised experience manipulations. The overall model also predicted

how the behavioral effect size depended on the initial d’ once we assume behavioral lapses

(Prins, 2012) in the model at approximately the same level as those inferred in our subject pool. We

note that, because of the (expected) inability to observed behavioral changes for tasks with initial

high d’, this study cannot confirm or refute the hypothesized linkage between IT neural effects and

behavioral effects in that particular regime.

Taken together, this result shows that at least three separate types of studies (human unsuper-

vised learning, IT unsupervised plasticity, and IT-to-COR-behavior testing) are all quantitatively con-

sistent with each other. As such, this result adds support to the overall working hypothesis: that

tolerant COR is instructed – at least in part – by naturally occurring unsupervised temporal contiguity
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experience that gradually reshapes the non-linear image processing of the ventral visual stream with-

out the need for millions of explicit supervisory labels (Krizhevsky et al., 2017; LeCun et al., 1989;

Riesenhuber and Poggio, 1999) and reviewed by LeCun et al., 2015.

Results
Our working hypothesis (see Introduction) predicts that IT population plasticity resulting from unsu-

pervised visual experience should accurately predict the direction, magnitude, and time course of all

changes in human object discrimination performance resulting from the same visual exposure. To

quantitatively test these predictions, we first carried out a set of human psychophysical experiments

with unsupervised temporal continuity experience that closely approximate the exposure paradigm

that has been shown to reliably produce IT plasticity (measured as changes in size tolerance at single

IT recording site) (Li and DiCarlo, 2010).

Measure changes in human object discrimination performance induced
by unsupervised visual experience
The basic experimental strategy is that, after testing initial object discrimination performance on a

set of discrimination tasks (‘Test phase,’ Figure 1A), we provide an epoch of unsupervised visual

experience (‘Exposure phase,’ Figure 1A) that is expected to result in IT plasticity (based on the

results of Li and DiCarlo, 2010). At the end of the exposure epoch, we remeasure discrimination

performance (Test phase), then provide the next epoch of unsupervised experience (Exposure

phase), etc. (see Figure 1A). This strategy allowed us to evaluate the accumulation of positive or

negative behavioral changes (a.k.a. ‘learning’) resulting from four unsupervised experience epochs

(400 exposure ‘trials’ each) over approximately 1.5–2 hr. We include control discrimination tasks to

subtract out any general learning effects.

Specifically, we evaluated changes in discrimination performance (relative to initial performance)

of each of a set of size-specific object discrimination tasks. A total of 174 human subjects on Amazon

Mechanical Turk (see Materials and methods and Kar et al., 2019; Majaj et al., 2015;

Rajalingham et al., 2018) participated in this experiment.

To measure object discrimination performance in each subject, we used a set of two-way alterna-

tive forced choice (2AFC) sub-tasks (size-specific object discrimination tasks; see

Materials and methods). These sub-tasks were randomly interleaved (trial by trial) in each test phase,

and the key test conditions used in the analyses (brackets indicated with d’s in Figure 1B) were

embedded within a balanced set of six sub-tasks and cover trials (see Figure 1B and

Materials and methods).

Our first experiments used pairs of faces as the objects to discriminate, and we targeted our

exposure manipulations at the big size (2� the baseline size; see Materials and methods and Fig-

ure 1; later, we targeted other pairs of objects and other sizes). Specifically, we used eight face

objects from a previous study (Majaj et al., 2015). We chose these face objects at this size because,

prior to unsupervised exposure, they had intermediate discriminability (mean d’ = 2.0 ± 0.1 for big

size, frontal view, n = 28 pairs of faces), thus allowing us the possibility to measure both positive and

negative changes in discrimination performance. For each subject, two target faces (manipulated

during exposure) and two control faces (not shown during exposure) were randomly chosen from

these eight faces.

Subjects were instructed to identify the single foreground face in a briefly presented test image

(100 ms) by choosing among two alternative choice faces immediately presented after the test

image, one of which is always correct (i.e., 50% chance rate). The test image contained one fore-

ground object with variation in view (position, size, pose), overlaid on a random background (see

Materials and methods for test image generation). The choice images were always baseline views (i.

e., size of ~2˚, canonical pose) without background.

Similar to prior work testing the effects of unsupervised exposure on single-site IT recordings

(Li and DiCarlo, 2010), each experiment consisted of two phases (Figure 1A): test phases to inter-

mittently measure the size-specific object discrimination performance (d’) for the target face pair

and control face pair (three d’ measured in each group of subjects, see Figure 1B bottom); and

exposure phases to provide unsupervised visual experience (pairs of images with different sizes in
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Figure 1. Experimental design and conceptual hypothesis. (A) Illustration of human behavioral experimental design and an example trial from the Test

phase and from the Exposure phase. (B) Top: example confusion matrix for a two-way alternative forced choice (2AFC) size-specific sub-task run during

each Test phase to monitor object-specific, size-specific changes in discrimination performance (see Materials and methods). Bottom: the two

Figure 1 continued on next page
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close temporal proximity; Figure 1A) that – based on prior work – was expected to improve or

decrease the discrimination performance on the exposed objects.

The purpose of the exposure phase was to deploy unsupervised visual experience manipulations

to target a particular object pair (two ‘target’ objects) at particular views (e.g., sizes) of those target

objects. For each exposure event, two images, each containing a different size object (frontal; no

background), were presented consecutively (100 ms each) (see Materials and methods for details). In

non-swapped exposure events, both images contained the same object (expected to ‘build’ size tol-

erance under the temporal contiguity hypothesis). In swapped exposure events, each images con-

tained a different target object (expected to ‘break’ size tolerance under the temporal contiguity

hypothesis). The conceptual predictions of the underlying IT neural population target object mani-

folds (DiCarlo and Cox, 2007) are that non-swapped exposure events will straighten the manifold of

each target object by associating size exemplars of the same object (as in the natural world), and

that swapped exposure events will bend and decrease the separation between the two manifolds by

incorrectly associating size exemplars of different objects (Figure 1C). This logic and experimental

setup are adopted entirely from prior work (Li and DiCarlo, 2008; Li and DiCarlo, 2010).

In our studies here, we specifically focused on manipulating the size tolerance in the medium size

(�1 of baseline view; ~2˚) to big size (�2 of baseline view; ~4˚) regime. Thus, the images shown dur-

ing the exposure phase (indicated by * in Figure 1B) were always medium- and big-size, frontal view

of the target objects. We conducted three types of unsupervised exposure experiments (u):

swapped (u1), non-swapped (u2) and non-swapped, followed by swapped (u3).

In experiment u1 (swapped exposure events), we found that discrimination of the target face pair

viewed at big size decreased with increasing numbers of exposure events (Figure 2A; top rows; red

solid line; n = 102 subjects). We found little to no change in the performance for the non-exposed

(small size) versions of those same faces (black dashed line; mean initial d´ is 1.2 ± 0.1) or for non-

exposed control faces (also tested at big size, black solid line). Lower panels in Figure 2A show the

learning effect defined by subtracting changes in control face discrimination performance (to remove

general learning effects over the experience epochs, which turned out to be small; see Figure 2A,

upper panel). In sum, we demonstrated an unsupervised, object-selective, size-selective temporal

contiguity-induced learning effect that was qualitatively consistent with prior work in ‘breaking’ toler-

ance (Cox et al., 2005; Wallis and Bülthoff, 2001) and measured the accumulation of that learning

over increasing amounts of unsupervised exposure.

In experiment u2 (non-swapped exposure events), we found that discrimination of the target face

pair viewed at big size increased with increasing numbers of exposure events (Figure 2B; top rows;

blue solid line; n = 36 subjects). As in experiment u1, we found little to no change in performance

for the non-exposed (small size) versions of those same faces or for non-exposed control faces (also

tested at big size, black solid line). This shows that, as predicted by the temporal contiguity hypothe-

sis, unsupervised experience can build size tolerance at the behavioral level.

Interestingly, after ~800 exposure events, the exposure-induced learning effects appeared to pla-

teau in both ‘breaking’ tolerance conditions (experiment u1, Figure 2A) and ‘building’ tolerance

Figure 1 continued

unsupervised exposure flavors deployed in this study (see Materials and methods). Only one of these was deployed during each Exposure phase (see

Figure 2). Exposed images of example-exposed objects (here, faces) are labeled with asterisks, and the arrows indicate the exposure events (each is a

sequential pair of images). Note that other object and sizes are tested during the Test phases, but not exposed during the Exposure phase (see d’

brackets vs. asterisks). Each bracket with a d’ symbol indicates a preplanned discrimination sub-task that was embedded in the Test phase and

contributed to the results (Figure 2). In particular, performance for target objects at non-exposed size (d’ labeled with dashed lines), target objects at

exposed size (d’ labeled with bold solid lines), and control objects (d’ labeled with black line) was calculated based on test phase choices. (C) Expected

qualitative changes in the inferior temporal (IT) neural population representations of the two objects that results from each flavor of exposure (based on

Li and DiCarlo, 2010). In each panel, the six dots show three standard sizes of two objects along the size variation manifold of each object. Assuming

simple readout of IT to support object discrimination (e.g., linear discriminant, see Majaj et al., 2015), non-swapped exposure tends to build size-

tolerant behavior by straightening out the underlying IT object manifolds, while swapped exposure tends to disrupt (‘break’) size-tolerant behavior by

bending the IT object manifolds toward each other at the swapped size. This study asks if that idea is quantitatively consistent across neural and

behavioral data with biological data-constrained models.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Outline and example test images.
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conditions (experiment u2, Figure 2B), suggesting a limit in the measurable behavioral effects (see

Discussion).

To test whether this unsupervised learning effect is reversible, we measured human performance

in a combined design (experiment u3) by first providing exposure epochs that should ‘build’ toler-

ance, followed by exposure epochs that should ‘break’ tolerance (n = 37 subjects). Consistent with

the results of experiments u1 and u2, we found that size tolerance first increased with non-swapped

(‘build’) exposures and then decreased with swapped (‘break’) exposures (Figure 2C), and that the

effect did not spill over to the control objects.

In sum, these results confirmed that the effect of unsupervised visual experience was specific (to

manipulated object and sizes) and strong even in adults. Furthermore, the measured human learning

effect trajectories with different unsupervised visual exposure conditions (u1, u2, u3) were taken as

behavioral effects that must – without any parameter tuning – be quantitatively predicted by our

working hypothesis (that links IT neural responses to COR behavior; see Introduction). We next

describe how we built an overall computational model to formally instantiate that working hypothe-

sis to make those predictions.
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Figure 2. Measured human unsupervised learning effects as a function of amount of unsupervised exposure. Each

‘exposure event’ is the presentation of two, temporally adjacent images (see Figure 1A, right). We conducted

three longitudinal unsupervised exposure experiments (referred to as u1, u2, and u3). (A) Swapped exposure

experiment intended to ‘break’ size tolerance (n = 102 subjects; u1). Upper panels are the changes in d’ relative to

initial d’ for targeted objects (faces) at exposed size (big) (red line), control objects (other faces) at the same size

(big) (black line), and targeted faces at non-exposed size (small) (dashed black line) as a function of number of

exposure events prior to testing. Lower panel is the to-be-predicted learning effect determined by subtracting

change of d’ for control objects from the change of d’ for target objects (i.e., red line minus black line). (B) Same

as (A), but for non-swapped exposure experiment (n = 36 subjects; u2). (C) Same as (A), except for non-swapped

exposure followed by swapped exposure (n = 37 subjects; u3) to test the reversibility of the learning. In all panels,

performance is based on population pooled d’ (see Materials and methods). Error bars indicate bootstrapped

standard error of the mean population pooled d’ (bootstrapping is performed by sampling with replacement

across all trials). p-value is directly estimated from the bootstrapped distributions of performance change by

comparing to no change condition. * indicates p-value<0.05; ** indicates p-value<0.01; *** indicates

p-value<0.001.
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A generative model to simulate the population distribution of IT
responses
To generate predictions of human behavior performance, we need to measure or otherwise estimate

individual IT neural responses to the same images used in the human psychophysical testing (above)

for a sufficiently large set of IT neurons (a.k.a. IT population responses). Because each of the objects

we used in human psychophysics had been previously tested in neural recording experiments from

monkey IT, we did not collect new IT population responses (very time consuming), but we decided

instead to make suitably accurate predictions of the initial population pattern of IT response for test

images of those objects (i.e., the IT response patterns prior to any simulated unsupervised plasticity

effects). To do this, we built a generative model of the IT population based on the previously

recorded IT population response to those objects. The output of this model is the FR of a simulated

IT population to one presentation of a newly rendered test image (generated from the 64 base

objects used in the previous study). With this model, we could simulate the initial IT population

responses to any image rendered from the psychophysically tested objects (approximately) without

recording more neurons in behaving animals.

This generative IT model captures the IT neuronal representation space with a multi-dimensional

Gaussian (MDG) model, assuming the distribution of IT population responses is Gaussian-like for

each object (see Materials and methods for Gaussian validation) (Figure 3A). Because the MDG pre-

serves the covariance matrix of IT responses to 64 objects, any random draw from this MDG gives

rise to an object response preference profile (one response level for each of 64 objects) of a simu-

lated IT neural site. To simulate the variance in object size, for each simulated site, we randomly

chose one size-tuning kernel from a pool of size-tuning curves that we had obtained by fitting curves

to real IT responses across changes in presented object size (n = 168 recording sites; data from

Majaj et al., 2015). This process is repeated independently for each simulated site. Motivated by

prior work (Li et al., 2009), we assumed separability of object representation and size tuning, and

simulated the response to any of the 64 objects.

To check if the simulation is statistically accurate in terms of the layout of images in IT population

representation space, we compared the representation similarity matrix (RSM; correlation between

neuronal population responses to different images) of different draws of a simulated IT with the

RSM measured from the actual IT neural data (Figure 3B). One typical example of that is shown in

Figure 3C, revealing high correlation of the two RSMs (r = 0.93 ± 0.01). While this does not guaran-

tee that any such simulated IT population is fully identical to an IT population that might exist in an

actual monkey or human IT, our goal was simply to get the simulated IT population response distri-

bution in the proper range (up to second-order statistics).

A standard IT-to-COR-behavior-linking model for core object
discrimination behavior
To make predictions about how IT neural changes will result in behavioral changes, we first needed

a model to establish the linkage between IT population response and core object discrimination

behavior prior to any experience-induced effects. We have previously found that simple weighted

linear sums of IT neural responses accurately predict the performance (d’) of human object discrimi-

nation for new images of those same objects (here termed the IT-to-COR-behavior-linking model)

(Majaj et al., 2015). That model has only two free hyperparameters: the number of neural sites and

the number of labeled (a.k.a. ‘training’) images used to set the weights of the decoder for each

object discrimination. Once those two hyperparameters are locked, it has been empirically demon-

strated that the performance for any object discrimination task on new images is accurately pre-

dicted by its trained decoder (Majaj et al., 2015). To test whether the simulated IT population

activity from the generative IT model (above) could quantitatively reproduce those prior results and

to lock these two hyperparameters, we compared the predicted performance (for any given object

recognition task) based on the simulated IT population (Figure 3D; red solid line) with the predicted

performance based on the previously recorded IT neural population (black solid line). We did this as

a function of number of recording sites for a set of object recognition tasks. Figure 3D illustrates

two example tasks (error bar is standard error across 40 random subsamples of recording sites). As

expected, we found that the model predictions overlapped with decoded performance of real IT
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Figure 3. Generative ITmodel and validation of the IT-to-core object recognition (COR)-behavior-linking model. (A) Generative IT model based on real

IT population responses. Top left box: schematic illustration of the neuronal representation space of IT population with a multi-dimensional Gaussian

(MDG) model. Each point of the Gaussian cloud is one IT neural site. Middle box: an example of simulated IT neural site. The distribution of object

preference for all 64 objects is created by a sample randomly drawn from the MDG (highlighted as a red dot; each color indicates a different object).

Then, a size-tuning kernel is randomly drawn from a pool of size-tuning curves (upper right box; kernels fit to real IT data) and multiplied by the object

response distribution (outer product), resulting in a fully size-tolerant (i.e., separable) neural response matrix (64 objects � 3 sizes). To simulate the final

mean response to individual images with different backgrounds, we added a ‘clutter’ term to each element of the response matrix (s2
clutter; see

Materials and methods). To simulate the trial-by-trial ‘noise’ in the response trials, we added a repetition variance (s2
repeats; see Materials and methods).

Bottom box: another example of simulated IT site. (B) Response distance matrices for neuronal responses from real IT neuronal activity (n = 168 sites)

and one simulated IT population (n = 168 model sites) generated from the model. Each matrix element is the distance of the population response

between pairs of objects as measured by Pearson correlation (64 objects, 2016 pairs). (C) Similarity of the model IT response distance matrix to the

actual IT response distance matrix. Each dot represents the unique values of the two matrices (n = 2016 object pairs), calculated for the real IT

population sample and the model IT population sample (r = 0.93 ± 0.01). (D) Determination of the two hyperparameters of the IT-to-behavior-linking

model. Each panel shows performance (d’) as a function of number of recording sites (training images fixed at m = 20) for model (red) and real IT

responses (black) for two object discrimination tasks (task 1 is easy, human pre-exposure d’ is ~3.5; task 2 is hard, human pre-exposure d’ is ~0.8;

indicated by dashed lines). In both tasks, the number of IT neural sites for the IT-to-behavior decoder to match human performance is very similar

(n ~ 260 sites), and this was also true for all 24 tasks (see E), demonstrating that a single set of hyperparameters (m = 20, n = 260) could explain human

pre-exposed performance over all 24 tasks (as previously reported by Majaj et al., 2015). (E) Consistency between human performance and model IT-

based performance of 24 different tasks for a given pair of parameters (number of training samples m = 20 and number of recording sites n = 260). The

consistency between model prediction and human performance is 0.83 ± 0.05 (Pearson correlation ± SEM). (F) Manifold of the two hyperparameters

(number of recording sites and number of training images) where each such pairs (each dot on the plot) yields IT-based performance that matches

initial (i.e., pre-exposure) human performance (i.e., each pair yields a high consistency match between IT model readout and human behavior, as in E).

The dashed line is an exponential fit to those dots at any of the three sizes as the outer product of the object and size-tuning curves (A, bottom).

However, since most measured size-tuning curves are not perfectly separable across objects (DiCarlo et al., 2012; Rust and Dicarlo, 2010) and

because the tested conditions included arbitrary background for each condition, we introduced independent clutter variance caused by backgrounds

Figure 3 continued on next page
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neural sites, indicating that our generative IT model has captured the relevant components of the IT

population response.

We next set out to choose the two free hyperparameters (number of sites and number of training

examples). The crossing point with human performance in Figure 3D reflects how many neural sites

are necessary to reach human performance level for a given number of training samples. Unlike the

real IT neural data (n = 168 recording sites) that required extrapolation to estimate the number of

sites matching human absolute performance (Majaj et al., 2015), we simulated up to 1000 IT sites

with the generative model to cover the range of neural sites necessary to reach human performance.

Consistent with Majaj et al., 2015, we found that the number of simulated IT sites required to

match human was similar across different tasks (260 ± 23) IT sites given 20 training images (tested

over 24 object discrimination tasks: low variation eight-way tests: eight basic level, eight car identifi-

cation, and eight face identification tasks; previously used in Majaj et al., 2015). Specifically, we

here used 260 sites with 20 training samples for all tasks, and the match between the decoded simu-

lated IT performance and human performance over all discrimination tasks was r = 0.83 ± 0.05

(n = 24 tasks), similar to previously reported match between decoded neural IT performance and

human for the same tasks (r = 0.868 from Majaj et al., 2015). Note that other specific combinations

of the number of IT sites and the number of training examples are also suitable (Figure 3F), and we

explore this later.

In sum, by setting the two decoder hyperparameters to match initial human performance, we

established a fixed linear decoder rule that could be applied to our simulated IT population to quan-

titatively predict the expected performance of the subject (i.e., the owner of that IT population) for

any object discrimination task.

The consequence is that, because the linkage model between the IT population and behavior is

now fixed in the model, any changes in the model IT population are automatically mapped to pre-

dicted changes (if any) in behavioral performance. From here on, we locked down the generative IT

model and the decoders that matched human initial performance (before learning), and combine

both of these models later to make predictions of direction and magnitude of behavioral perfor-

mance change (if any) that should result from any given change in the IT population driven by unsu-

pervised plasticity (Figure 2).

Unsupervised IT plasticity rule
To model the IT neural population response changes that result from the unsupervised visual experi-

ence provided to the human subjects, we developed an unsupervised IT plasticity rule guided by

previous studies of IT plasticity effects in the rhesus monkey that used the same paradigm of unsu-

pervised visual experience that we provided here to our human subjects (Li et al., 2009; Li and

DiCarlo, 2008; Li and DiCarlo, 2010). In particular, we set out to build an unsupervised IT plasticity

rule that could predict the (mean) response change that occurs in each and every IT neuron as a

result of each presented pair of temporally contiguous visual images. We assumed that the same

model would also apply to human ‘IT’ without any parameter modifications (see Discussion).

Those prior monkey studies revealed that exposure to altered (‘swapped’) visual statistics typically

disrupts the size tolerance of single IT neurons, while exposure to normal statistics in visual experi-

ence (non-swapped condition) typically builds size tolerance (Li and DiCarlo, 2010). To develop our

unsupervised IT plasticity rule, we replicated the exact same experiment used in the monkeys on

Figure 3 continued

on top of this for each size of an object (A) by randomly drawing from the distribution of variance across different image exemplars for each object. We

then introduced trial-wise variance for each image based on the distribution of trial-wise variance of the recorded IT neural population (Figure 3—

figure supplement 1E). In sum, this model can generate a new, statistically typical pattern of IT response over a population of any desired number of

simulated IT neural sites to different image exemplars within the representation space of 64 base objects at a range of sizes (here targeting ‘small,’

‘medium,’ and ‘big’ sizes to be consistent with human behavioral tasks; see Materials and methods for details). The simulated IT population responses

were all constrained by recorded IT population statistics (Figure 3—figure supplement 1). These statistics define the initial simulated IT population

response patterns, and thus they ultimately influence the predicted unsupervised neural plasticity effects and the predicted behavioral consequences of

those neural effects.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Supplemental information for generative IT model.

Jia et al. eLife 2021;10:e60830. DOI: https://doi.org/10.7554/eLife.60830 10 of 34

Research article Neuroscience

https://doi.org/10.7554/eLife.60830


α = 0.0004 α = 0.0016 α = 0.0064

(Li & DiCarlo, 2010)

Preferred (P)

Non-preferred (N)

R
e

s
p

o
n

s
e

Object size

Pre-exposure

Post-exposure

0.2

-1.4

T
im

e
(1

6
0

0
 e

x
p

o
s
u

re
s
)

A

C

B

0 800 1600

N
o

rm
a

liz
e

d
 c

h
a

n
g

e
 

in
 s

e
le

c
ti
v
it
y
 (

∆
(P

-N
)/

(P
-N

))

-0.6

α = 0.0004 α = 0.0064
0.2

-1.4
0 800 1600

-0.6

Number of exposures

Dashed lines: Neural data from IT

Solid lines: Model prediction

0.2

-1.4
0 800 1600

-0.6

Number of exposuresNumber of exposures

α = 0.0016

D

Exposure design for single IT neuron plasticity

n=83

0.8

1.0

1.2

n=5

n=15

n=34

n=114

n=219

n=309
0.8

1.0

1.2

Pre Post Pre Post

P

N

Non-swapped exposure:

Building correct selectivity

Swapped exposure:

Destroying correct selectivity

P

N

High selectivity for P

Simulated IT neurons grouped 

according to initial selectivity

at the exposed size.

Low selectivity for P

N
o

rm
a

liz
e

d
 

re
s
p

o
n

s
e

n=461

n=11

n=30

n=253

D
ec

re
as

in
g 

in
iti
al
 s
el
ec

tiv
ity

 fo
r P

re
fe

rr
ed

 o
bj
ec

t (
P
)

P

N

Swapped size

Non-swapped size

Medium size

(n=42 sites)

Figure 4. Temporal continuity-based inferior temporal (IT) neuronal plasticity rule. (A) Illustration of exposure design for IT neuronal plasticity (adapted

directly from Li and DiCarlo, 2010) measured with single electrodes. P refers to preferred object of the IT unit, and N refers to non-preferred object of

that unit. (B) We developed an IT plasticity rule that modifies the model neuronal response to each image in individual neural sites according to the

difference in neuronal response between lagging and leading images for each exposure event (see Materials and methods). The figure shows the

Figure 4 continued on next page
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simulated IT neural sites. Figure 4A illustrates the exposure design for single IT sites, where the pre-

ferred object (P) and non-preferred object (N) of each neural site are defined by the magnitude of

neuronal activity (z-scored across all objects for each IT site). Selectivity of a neural site is measured

by the difference of neuronal responses to its preferred and non-preferred objects (P – N)/(p + N),

the same as Li and DiCarlo, 2010.

We used a Hebbian-like (associative) plasticity rule (Caporale and Dan, 2008; Hebb, 1949;

Oja, 1982; Paulsen and Sejnowski, 2000), which updates FR for each pair of images based on the

difference of neuronal FR between the lagging and leading images (see Materials and methods).

Our plasticity rule states that the modification of FR of each IT unit to the leading image at time t is

equal to the difference of FR between lagging and leading images multiplied by a plasticity rate a.

This plasticity rule tends to reduce the difference in neuronal responses to consecutive images and

implies a temporal association to images presented close in time. The plasticity rule is conceptually

similar to previously proposed temporal continuity plasticity or a.k.a. slow feature analysis

(Berkes and Wiskott, 2005; Földiák, 1990; Földiák, 1991; Mitchison, 1991; Sprekeler et al.,

2007). It is physiologically attractive because the findings on short-term synaptic plasticity revealed

that synaptic efficacy changes over time in a way that reflects the history of presynaptic activity

(Markram et al., 2012; Markram et al., 1997). Even though conceptually similar, our plasticity rule

is a ‘descriptive’ rather than a ‘mechanistic’ rule of plasticity at all stages of the ventral stream. That

is, the rule does not imply that all the underlying plasticity is in IT cortex itself – but only aims to

quantitatively capture and predict the changes in IT responses resulting from unsupervised visual

experience. It is general in a sense that it can make predictions for different objects or dimensions of

variations, but it is (currently) limited in that it only applies to temporally paired image associations,

ignores any correlation in the neural response patterns, and assumes that updates occur only in the

responses to the exposed images (i.e., non-exposed object/size combinations are not affected).

To show the effects of this unsupervised IT plasticity rule, we illustrate with an example simulated

IT neural site. The simulated neural site in Figure 4B was initialized to be – like many adult monkey

IT neurons – highly size tolerant: its response to a preferred object (P) is always greater than

response to a non-preferred object (N) at each size. After applying the unsupervised exposure

design in Figure 4A (200 exposure events for each arrow, 1600 exposure events in total), the

responses to each of the six conditions (2 objects � 3 sizes) evolved as shown in Figure 4B. We note

two important consequences of this plasticity rule. First, because the rule was designed to decrease

the difference in response across time, responses to images presented consecutively tend to

become more similar to each other, which results in a reduction in the response difference between

P and N at both the swapped and the non-swapped sizes. Second, once the neural site reached a

state in which its response is no different over consecutively exposed images, the learning effect sat-

urates. Notably, unlike adaptive changes in plasticity rate in the typical supervised optimization of

deep neural networks (Kingma and Ba, 2014), our plasticity rate is kept constant over the ‘lifetime’

of the model. The gradual shrinkage of learning effect (D(P – N)/(p + N)) as more and more exposure

events are provided was a consequence of the gradual reduction in the absolute difference between

neuronal responses to the two consecutive images that makeup each exposure event.

There is only one free parameter in our plasticity rule equation – the plasticity rate a. We deter-

mined this parameter using the single-electrode physiology data collected previously in the lab

(Li and DiCarlo, 2010). Figure 4C shows the average IT plasticity effect that results from different

Figure 4 continued

model-predicted plasticity effects for a standard, size-tolerance IT neural site and 1600 exposure events (using the same exposure design as Li and

DiCarlo, 2010; i.e., 400 exposure events delivered [interleaved]) for each of the four black arrows in panel (A) for three different plasticity rates. Dashed

lines indicate model selectivity pattern before learning for comparison. (C) Normalized change over time for modeled IT selectivity for three different

plasticity rates. Dashed lines are the mean neuronal plasticity results from the same neural sites in Li and DiCarlo, 2010 (mean change in P vs. N

responses, where the mean is taken over all p > N selective units that were sampled and then tested; see Li and DiCarlo, 2010). Solid lines are the

mean predicted neuronal plasticity for the mean IT model ‘neural sites’ (where these sites were sampled and tested in a manner analogous to Li and

DiCarlo, 2010; see Materials and methods). Blue line indicates the change in P vs. N selectivity at the non-swapped size, green indicates change in

selectivity at the medium size, and red indicates change in selectivity at the swapped size. Error bars indicate standard error of the mean. (D) Mean

swapped object (red) and non-swapped object (blue) plasticity that results for different model IT neuronal sub-groups – each selected according to

their initial pattern of P vs. N selectivity (analogous to the same neural sub-group selection done by Li and DiCarlo, 2010; c.f. their Figure 6).
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settings of a (here the plasticity effect is defined by the normalized changes in selectivity: D(P – N)/

(P – N), exactly as was done in Li and DiCarlo, 2010). As expected, a higher plasticity rate (a) results

in greater model IT plasticity effects (Figure 4C). We chose the plasticity rate (a) that best matched

the prior monkey IT neurophysiology results (i.e., the a that resulted in the minimal difference

between the model IT plasticity effect [solid lines] and the experimentally reported IT plasticity effect

[dashed lines] for swapped, non-swapped, and medium object sizes; see Figure 4C middle). The

best a is 0.0016 nru per exposure event (nru = normalized response units; see

Materials and methods for intuition about approximate spike rate changes). Once we set the plastic-

ity rate, we locked it down for the rest of this study (otherwise noted later where we test rate

impact).

We next asked if our IT plasticity rule naturally captured the other IT plasticity effects reported in

the monkey studies (Li and DiCarlo, 2010). Specifically, it was reported that, for each neural site,

the selectivity that results from a fixed amount of unsupervised exposure depends on the initial

selectivity of that site. Thus, the unsupervised ‘swapped’ experience manipulation causes a reduction

of selectivity for neural sites that show a moderate level of initial P (preferred object) vs. N (non-pre-

ferred object) selectivity at the swapped size, and the same amount of unsupervised experience

reverses the selectivity of neuronal sites that show a low level of initial selectivity at the swapped size

(i.e., cause the site to, oxymoronically, prefer object N over object P). Li and DiCarlo, 2010 also

reported that the more natural, ‘non-swapped’ experience manipulation caused a building of new

selectivity (for neuronal units that initially show a strong preference for P at some sizes, but hap-

pened to have low P vs. N selectivity at the non-swapped size).

We tested for both of these effects in our model by selecting subsets of neural sites in the simu-

lated IT population in exactly the same way as Li and DiCarlo, 2010 (sampled from n = 1000 simu-

lated IT units) and then applied the plasticity rule to those units. We found a very similar

dependency of the IT plasticity to those previously reported IT plasticity effects (Figure 4D; cf. see

Figures 6 and 7 of Li and DiCarlo, 2010).

Given that our IT plasticity rule tends to pull the response of temporally contiguous images

toward each other (Berkes and Wiskott, 2005; Földiák, 1990; Földiák, 1991; Mitchison, 1991;

Sprekeler et al., 2007), it is not entirely obvious how this can build selectivity (i.e., pull response to

P and N apart). The reason this occurs is that some IT neural sites have (by chance draw from the

generative model of IT, above) initially high selectivity for P vs. N at the medium size and no selectiv-

ity at (e.g.) the big size. (Indeed, such variation in the IT population exists as reported in Li and

DiCarlo, 2010.) By design, the non-swapped (‘natural’) unsupervised exposure temporally links Pmed

(high response) with Pbig, which – given the plasticity rule – tends to pull the Pbig response upward

(pull it up higher than Nbig). In addition, the non-swapped exposure links Nmed (low response) with

Nbig, which can pull the Nbig response downward (provided that the Nmed response is initially lower

than the Nbig response). Both effects thus tend to increase the Pbig vs. Nbig response difference (i.e.,

both effects tend to ‘build’ selectivity for P vs. N at the big presentation size, which results in the

neural site preferring object P over object N at both the medium and the big sizes – a property

referred to as size ‘tolerance’). This effect is observed in single IT neural site size-tuning curve for P

and N before and after learning (see Figure 3 in Li and DiCarlo, 2010). Indeed, it is this effect that

conceptually motivated temporal contiguity plasticity in the first place – natural-occurring statistics

can be used to equalize the responses to the same object over nuisance variables (such as size).

In sum, our very simple IT plasticity rule quantitatively captures the average IT plasticity effects

for which its only free parameter was tuned, and it also naturally captures the more subtle IT neural

changes that have been previously described.

Putting together the overall model to predict human unsupervised
learning effects
To summarize, we have (1) built and tested a generative IT model that captured the object represen-

tation space and variability in the actual primate IT population; (2) locked down a set of parameters

of a linear decoder rule that quantitatively links the current state of the simulated IT population to

initial human performance on any discrimination task (including the ones we plan to test); and (3)

defined an IT plasticity rule that describes how each individual IT neural site changes as a result of

each unsupervised exposure event, and we locked down the only free parameter (plasticity rate) in

that rule to match existing monkey IT plasticity data (see Figure 1—figure supplement 1A). At this
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point, we could – without any further parameter tuning – combine each of these three model com-

ponents into a single overall model that predicts the direction, magnitude, and time course of

human unsupervised learning effects that should result from any unsupervised learning experiment

using this exposure paradigm (pairwise temporal image statistics).

Specifically, to generate the predictions for each of unsupervised learning experiments (u: u1, u2,

u3; see Figure 2), we (1) initialized a potential adult human IT (from the generative IT model) with a

total of 260 simulated IT recording sites; (2) built linear decoders for the planned object discrimina-

tion tasks that read from all 260 sites, using 20 training examples for each and every task; (3) froze

the parameters of all such decoders (i.e., froze the resulting weighting on each simulated IT neural

site on the ‘subject’s’ object choice decision); (4) ‘exposed’ the IT model population to the same

unsupervised temporal exposure history as the human subjects, using the IT plasticity rule to update

the model ‘IT’ after each temporally adjacent image exposure pair to update the responses of each

simulated IT neural site (note that the plasticity trajectory of each neural site is dependent on both

its initial object/size response matrix [1], and the sequence of images applied during unsupervised

experience [u]); (5) measured the changes in ‘behavioral’ performance of the overall model (changes

in object discrimination performance of the [frozen] decoders [2]); and (6) took those changes as the

model predictions of the changes in human performance that should result from that unsupervised

experience (u). Again we emphasize that, while the overall model relies heavily on data and parame-

ters derived explicitly or implicitly from these prior studies (Li and DiCarlo, 2010; Majaj et al.,

2015), no components or parameters of this model nor its predictions depended on the behavioral

data collected in this study.

To give robust model estimates of the average predicted behavioral effects, we repeated this

process (1–6) 100 times for each experiment (u) and averaged the results, which is analogous to run-

ning multiple subjects and averaging their results (as we did with the human data; see Figure 2). For

clarity, we note that the prediction stochasticity is due to random sampling of the IT generative pop-

ulation, the clutter variability introduced in the generative IT model when generating the initial pop-

ulation response for each test image, the trial-by-trial variation in the simulated IT responses, the

random unsupervised exposure event sequence (see Materials and methods), and randomly drawn

test images, all of which we expect to average out.

Note that, in expecting that these overall model predictions might be accurate, we are implicitly

making the following assumptions: (1) monkey IT and human IT are approximately identical

(Kriegeskorte et al., 2008; Rajalingham et al., 2015), (2) the linkage of IT to behavioral perfor-

mance is approximately identical (as suggested by Majaj et al., 2015), (3) human IT unsupervised

plasticity is the same as monkey IT unsupervised plasticity, and (4) humans do not re-learn or other-

wise alter the assumed mechanistic linkage between IT and behavior during or after unsupervised

visual experience (at least not at the time scales of these experiments: 1.5–2 hr).

Results: predicted learning vs. observed learning
Figure 5A, D, E show the model-predicted learning effects (black solid line) for each of the three

unsupervised experiments (u1, u2, u3) plotted on top of the observed measured human learning

effects (red line, reproduced from the learning effects shown in Figure 2 bottom). For each experi-

ment, we found that the overall model did a very good job of predicting the direction, magnitude,

and time course of the changes in human behavior. The directional predictions are not surprising

given prior qualitative results, but the accurate predictions of the magnitude and time course are

highly non-trivial (see below). Despite these prediction successes, we also noticed that the predic-

tions were not perfect, most notably after large numbers of unsupervised exposures (e.g. Figure 5E,

rightmost points), suggesting that one or more of our assumptions and corresponding model com-

ponents are not entirely accurate (see Discussion).

Given the surprising overall quantitative accuracy of the model predictions straight ‘out of the

box,’ we wondered if those predictions might somehow occur even for models that we had not care-

fully tuned to the initial (pre-exposure) human performance and the previously reported IT plasticity.

That is, which components of the model are critical to this predictive success? We tested this in two

ways (focusing here on experiment u1).

First, we built model variants in which the IT plasticity rate (a) was either four times smaller or

four times bigger than empirically observed in the prior monkey IT neurophysiology (solid gray lines)

and re-ran the entire simulation procedure (above). In both cases, the predictions of these (non-
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Figure 5. Overall model-predicted learning effects vs. actual learning effects. (A) Overall model-predicted

learning effect (solid black line) for experiment u1 (swapped exposure) with the IT-to-behavior-linking model

matched to initial human performance (hyperparameters: number of training images m = 20, number of model

neural sites n = 260; see Figure 3) and the IT plasticity rate matched to prior IT plasticity data (0.0016; see

Figure 4). Red line indicates measured human learning effect (reproduced from Figure 2A, lower). Gray lines

indicate model predictions for four times smaller plasticity rate and four times larger plasticity rate. Error bars are

standard error over 100 runs of the overall model; see text. (B) Decoder hyperparameter space: number of training

Figure 5 continued on next page
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biology-matched) model variants were now clearly different in magnitude than the observations

(Figure 5A). This result is arguably the strongest evidence that the single-unit IT plasticity effects

fully account for – and do not over-account for – the human unsupervised learning effects presented

thus far.

Second, we built model variants in which the two decoder hyperparameters (number of neural

sites and number of training images) were no longer correctly aligned with the initial human perfor-

mance levels. Figure 5B illustrates the two-dimensional hyperparameter space, and the dashed line

represents potential choices of the two hyperparameters that match human initial performance (the

IT-to-COR-behavior-matching manifold; Figure 3F). Regions above (or below) that manifold indicate

hyperparameter choices where the decoders are better (or worse) performing than initial human per-

formance. We found that the unsupervised learning effects predicted by the overall model

(Figure 5C, two black lines on top of each other corresponding to two choices of hyperparameters,

black dots in Figure 5B) continued to well-approximate human learning effects. This was also true

for other combinations of hyperparameters along the dashed black manifold in Figure 5B (~10 com-

binations tested; results were similar to those shown in Figure 5C–E, not shown). In other words, for

model settings in which the model variant was in line with the biological initial state, the predictions

of the unsupervised learning effects remained similarly accurate. This is a nice robustness check on

the model simulations and predictions. (However, as a side note orthogonal to our goals here, this

result also means that, as in prior work [Majaj et al., 2015], we cannot use this analysis to determine

which of these model variants is more matched to the biology.)

In contrast, when we built model variants in which the choices of the two hyperparameters did

not match human initial performance, the unsupervised learning effect predicted by the overall

model clearly differed from the observed human learning effect. Specifically, when an overall model

starts off with ‘super-human’ performance, it overpredicted the learning effect; and when a different

model starts off as ‘sub-human,’ it underpredicted the learning effect.

In sum, it is not the case that any model of the form we have built here will produce the correct

predictions – proper (biological) setting of the unsupervised IT plasticity rate and proper (biological)

setting of the IT-to-COR-behavior-linkage model are both critical. It is important to note that we did

not tune these biologically constrained hyperparameters based on fitting the unsupervised behav-

ioral learning effects in Figure 2 – they were derived in accordance with prior neurobiological work

as outlined above.

The unsupervised learning effect depended on the initial task difficulty
So far, we have established a quantitative overall model that quite accurately predicted the direc-

tion, magnitude, and time course of learning effects resulting from a range of unsupervised exposure

manipulations. For each of those tests, we focused on object discrimination tasks that had an inter-

mediate level of initial task difficulty (face discrimination tasks with initial d’ around 2.0), so that we

had dynamic range to see both increases and decreases in performance (e.g., Figure 2). However,

we noticed that our IT plasticity rule seemed to imply that those learning effects would depend on

the strength of the initial selectivity of individual IT neural sites for the exposed objects (i.e., the

Figure 5 continued

samples and number of neural features (recording sites). The dashed line indicates pairs of hyperparameters that

give rise to IT-to-behavior performances that closely approximate human initial (pre-exposure) human object

recognition performance over all tasks. (C) Predicted unsupervised learning effects with different choices of

hyperparameters (in all cases, the IT plasticity rate was 0.0016 – i.e., matched to the prior IT plasticity data; see

Figure 4). The two black lines (nearly identical, and thus appear as one line) are the overall model-predicted

learning that results from hyperparameters indicated by the black dots (i.e., two possible correct settings of the

decoder portion of the overall model, as previously established by Majaj et al., 2015). Green and blue lines are

the overall model predictions that result from hyperparameters that do not match human initial performance (i.e.,

non-viable IT-to-behavior-linking models). (D) Predicted learning effect (black line) and measured human learning

effect (red) for building size-tolerance exposure. (E) Model-predicted learning effect (black line) and measured

human learning effect (red) for building and then breaking size-tolerance exposure. In both (D) and (E), the overall

model used the same parameters as in (A) (i.e., IT plasticity rate of 0.0016, number of training samples m = 20, and

number of model neural sites n = 260).
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initial P vs. N response difference). The intuition is that this response difference is the driving force

for IT plasticity updates (e.g., no difference leads to no update, large difference leads to large

update). This in turn implied that the learning effect size should depend on the initial task perfor-

mance (d’).

To test for this dependence, we focused on the unsupervised size tolerance ‘breaking’ manipula-

tion (as in u1, Figure 2A, but with 800 unsupervised ‘swapped’ exposures; see

Materials and methods) and tested new sets of human subjects using a wide range of initial task diffi-

culties, ranging from subordinate object discriminations (low d’) to basic-level object discriminations

(high d’). We focused on 13 size-specific object discrimination sub-tasks with either small-medium-

size swapping exposure or medium-big-size swapping exposure. Each subject received only one

exposure variant (see Materials and methods). For each exposure variant, 20–40 new human subjects

were tested, and we quantified the unsupervised learning effect (‘breaking’) as the change (from ini-

tial) in performance (relative to control objects, as in Figure 2A).

Figure 6B shows that unsupervised learning effect plotted against pre-exposure task difficulty for

all 13 object discrimination tasks. This result not only confirms that this unsupervised learning effect

is observed for a range of object discriminations (e.g., not just face objects), but it also showed a

relationship between task difficulty (d’) and the magnitude of that learning effect. In particular, for

initially easy tasks (d’ > ~2.5) and initially difficult tasks (d’ < ~0.5), we observed a smaller learning

effect than tasks with intermediate initial performance.

We found that our overall model quite naturally – for the reasons outlined above – predicted the

smaller learning effect for initially difficult tasks (the left side of Figure 6B). Notably, the model as

defined above did not naturally predict the lack of observed learning effects for the initially easy

tasks (high initial d’) – it tended to overpredict the magnitude of behavioral changes that will result

d’ predicted by
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Figure 6. Learning effect as a function of initial task difficulty. (A) Illustration of the saturation of measured d’ that

results from the assumption that the subject guesses on a fraction of trials (lapse rate), regardless of the quality of

the sensory evidence provided by the visually evoked inferior temporal (IT) neural population response (x-axis). (B)

Measured human learning effect for different tasks (colored crosses) as a function of initial (pre-exposure) task

difficulty (d’) with comparison to model predictions with or without lapse rate (dots). Each cross or dot is a specific

discrimination task. For crosses, different colors indicate different types of tasks and exposures: green indicates

small-size face discrimination learning effect induced with medium-small swapped exposure (n = 100 subjects);

blue indicates big-size face discrimination learning effect induced with medium-big swapped exposure (n = 161

subjects); red indicates small-size basic-level discrimination learning effect induced with medium-small swapped

exposure (n = 70 subjects). Performance is based on population pooled d’. Error bars indicate bootstrapped

standard error of the mean population pooled d’ (bootstrapping is performed by sampling with replacement

across all trials). p-value is directly estimated from the bootstrapped distributions of performance change by

comparing to no change condition. * indicates p-value<0.05.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Distribution of initial task performance.
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in those high d’ task (see Figure 6B, black dots). However, we realized that, if we assumed that the

model also has a lapse rate similar to that of humans (Prins, 2012), then this discrepancy might go

away. That is, we assume that there is some non-zero fraction of trials for which the subject guesses

or makes motor errors, regardless of the quality of the sensory-driven information. The intuition here

is that human subjects make task-independent mistakes (‘lapses’), and even a low rate of random

lapses puts a ceiling on the d’ value that can be experimentally measured (Figure 6A). In the context

of our learning experiments, this assumption would mean that the underlying neural representation

might indeed be changing a great deal (at least that is what our current model predicts), but those

changes cannot be measured as changes in human performance in the face of a lapse-rate induced

measurement ceiling (e.g., a sensory evidence d’ of 5 could change to a sensory evidence d’ of 3.5

[a large d’ change of 1.5], but we would measure an observed behavioral d’ of ~3 in both cases and

thus report a behavioral d’ change of ~0). In contrast, the overall model that we described above

had a zero lapse rate, which meant that we could measure changes in its behavioral performance for

even very large initial d’ values.

To explore this, we asked: what is the (mean) lapse rate of the human subjects in our experi-

ments? To estimate this, we used half our human data to rank the average initial human performance

of each task which we take as an estimate of the ordering of those tasks in terms of available sensory

evidence. We then used the remaining data to plot the observed human performance on each task

(Figure 6—figure supplement 1A). We found that the average performance tended to plateau

around 90%, which we take as an indication of a performance ceiling that cannot be explained by a

lack of sensory evidence, and thus we attribute to multiple types of downstream errors collectively

referred to as lapses. We also directly quantified the distribution of task performance accuracy for

basic-level tasks (easy tasks: d’ > 2.5) in our experiments (Figure 6) and found that the distribution

has a maximum of 95.0% (Figure 6—figure supplement 1B). These analyses suggest that the lapse

rate of our subject pool is ~10% (i.e., 95% accuracy for two choice tasks with perfect sensory evi-

dence), which is consistent with prior work on human lapse rates (<20%; Manning et al., 2018). We

simulated the effect of 9% lapse rate and 20% lapse rate (i.e., we told the model to make random

guesses on 9% or 20% of trials, regardless of the strength of sensory evidence) and found that these

new overall models reasonably explained the dependence of the observed magnitude of human d’

changes as a function of initial human d’ (Figure 6B).

In sum, we interpret the lapse rate analyses not as a failure of the overall model, but instead as a

limitation of our psychophysical experiments in this study. That is, the lapse rate estimate is consis-

tent with the hypotheses that, in the high initial d’ range, the IT population is changing (indeed, the

exposure conditions are close to the conditions of the original monkey neural experiments; Li and

DiCarlo, 2010), but that, in the face of a lapse rate, the behavioral consequences of those changes

are predicted to be small relative to the effects of downstream biological variability. That being said,

it also means that the current study is simply not able to test the IT plasticity to behavioral-learning

linkage in the initial high d’ range, and we take that as a target for future experimental work (see

Discussion).

Discussion
The goal of this study was to ask if previously reported temporal contiguity-driven unsupervised

plasticity in IT neurons quantitatively accounts for temporal contiguity-driven unsupervised learning

effects in humans.

To do that, we built an overall computational model to predict human performance change

resulting from plasticity in individual IT neural site FRs under the paradigm of unsupervised temporal

contiguity exposure (temporally contiguous pairs of images). The overall model had three core com-

ponents: (1) a generative model of a baseline adult IT neuronal population, (2) an IT-population-to-

COR-behavior-linking model (adopted directly from Majaj et al., 2015), and (3) an IT plasticity rule

that aimed to capture and predict how pairs of temporally associated images lead to updates in the

(future) image-driven responses of each individual IT neural site. Each of these three model compo-

nents was guided by prior work and constrained by prior data to set its parameters, and the com-

bined overall computational model was directly used to predict human learning effects without

further parameter tuning.
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To test the overall model, we asked the model to predict the human performance changes for

three separate unsupervised learning experiments and compared those predictions with the human

performance changes (averaged over human subjects) that we measured in those three experiments.

We found that the direction, magnitude, and time course of those mean unsupervised learning

effects were all quite well predicted by the overall model (but not perfectly predicted). We also

found that the model could naturally explain the dependence of the measured unsupervised learning

on initial object discrimination difficulty, but that it could only fully do so when we assumed model

‘behavioral’ lapse rates that were similar to that estimated in our human subject pool.

In sum, this work establishes a quantitative linking model between the plasticity in individual IT

neurons and human behavioral changes (both improvements and disruptions) for

temporal contiguity-driven unsupervised learning for the designed tasks. More broadly, the accuracy

of the model predictions supports the overarching hypothesis that temporally contiguous unsuper-

vised learning could help shape neural representations that underlie robust (i.e., tolerant) COR, even

in adults.

We were somewhat surprised that the overall model did such an accurate job of predicting the

human learning effects over time essentially from predicted updates on the responses of IT neural

sites. This was surprising because the overall model implicitly assumes that monkey IT and human IT

are approximately identical (Kriegeskorte et al., 2008; Rajalingham et al., 2018), the linkage of IT

to COR behavior is approximately identical in monkeys and humans (as previously suggested;

Majaj et al., 2015), human unsupervised IT plasticity is the same as monkey IT plasticity, and that lit-

tle or no behaviorally relevant plastic changes occur in the mechanistic linkage between IT and

behavior during or after unsupervised visual experience (at least not at the time scales of these

experiments: 1.5–2 hr). Of course, the results here do not prove all of the above assumptions to be

correct. Indeed, another interpretation of these results is that many of those assumptions are incor-

rect, but that the errors they each induce in the model predictions coincidentally cancel each other

out. However, based on both the prior work cited above and the current study, we believe that it is

more parsimonious to assume that the model is predictively accurate because all of the above are

approximately correct until further experiments show otherwise.

We think it is quite interesting and demonstrative of this approach that the overall model could

predict behavioral learning effects in the low initial d’ and moderate initial d’ regime for different

exposure types (build or break), even though the images used in those tasks are in a different d’

regime from the specific images used in the neuronal plasticity experiments used to tune the model

learning (i.e., those neural experiments were done with images in a high d’ regime). We note that

the ability to make such tests in these other d’ regimes is the key reason that we built the overall

composite model in the first place: a generative IT model (simulating IT population patterns to a

wide range of image conditions) + an IT neural-to-behavior-linking model + an IT plasticity model

(independent of specific images). End-to-end models such as this allow us to predict effects under

conditions that no experiment has yet tested, and to then test some of them as we have done here.

That is, the integrated model imparts new generalizable knowledge and understanding.

We noted a small discrepancy between the predictions of the model and the human learning

data at the longest exposure durations that we tested (1600 exposure; ~1.5 hr; see Figure 5A,C),

where the model predicted slightly stronger behavioral changes than measured. The most likely pos-

sibility is that learning over long periods of unsupervised exposure involves more complicated neural

mechanisms than those that are captured by our simplified unsupervised IT plasticity rule. For exam-

ple, perhaps the plasticity rate slows down as the subject fatigues in the experiment. Or perhaps the

plasticity mechanisms involve some type of renormalization of the responses of each IT neuron to

retain some selectivity to different objects, as motivated by prior theoretical work on temporal conti-

guity learning (Sprekeler et al., 2007; Wiskott and Sejnowski, 2002). Similarly, plasticity along the

ventral stream could involve homeostatic range adjustment, which is fundamental to individual neu-

rons (Turrigiano and Nelson, 2004), as motivated by studies of LTP and LTD plasticity in V1 neurons

(e.g., BCM rules; Bienenstock et al., 1982; Toyoizumi et al., 2005). While we did not explicitly

model any of these neural plasticity effects, they could be explored in future modeling studies with

even tighter tests on neurons and behavior than we achieved here.

The dependency of behavioral learning effects on initial task difficulty is also an important obser-

vation. The empirical human results show that tasks with moderate initial difficulty give rise to maxi-

mum measurable learning effects in the paradigm used here. The learning effects for hard to
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moderate tasks are naturally predicted with the initial overall model. However, for easy tasks (typi-

cally d’ > ~2.5), our initial overall model predicted a larger learning effect than we empirically

observed in humans. In hindsight, this discrepancy seems obvious if we assume that human subjects

make errors unrelated to the sensory evidence (e.g., due to inattention or motor error). In prior

work, this is quantified as a lapse rate (Madigan and Williams, 1987; Manning et al., 2018;

Prins, 2012; Wichmann and Hill, 2001). Our simulation, and previous studies, suggests that the

existence of lapse rate imposes a ceiling on measured performance (Gold and Ding, 2013;

Pisupati et al., 2021; Prins, 2012; Wichmann and Hill, 2001) and thus would strongly mask mea-

sured performance changes in that (high d’) regime. In other words, any performance changes within

that ceiling would be virtually undetectable. Even though we were able to indirectly estimate the

lapse rate of our subject pool, we did not make direct measurements of lapse rate. Furthermore, the

influence of lapse rate on learning could be complex, for example, it can fluctuate across time

depending on brain states (Ashwood et al., 2020). Therefore, future experiments are needed to try

to better estimate unsupervised performance changes in the high d’ regime (perhaps with same

images as the neural experiments) and comparing with this model and others. This might be done

by precisely measuring lapse rate for each human subject to possibly allow extraction of even small

accuracy changes within each subject, controlling/minimizing lapse rate in a lab environment, giving

larger experimental doses of unsupervised exposure, or all of these. However, our results here can-

not rule out the possibility that no behavioral effects will be found in this high initial performance

regime, no matter how strong the unsupervised exposure dose. Such a finding would falsify the

model presented here.

In this work, since we want to establish a quantitative link between single IT neuronal plasticity

and human unsupervised learning effects, we matched many of the conditions to those used in prior

IT plasticity work. For example, we used the exact same exposure procedure to introduce

temporal continuity-based learning for size tolerance (Li and DiCarlo, 2010). However, our study still

included several differences compared to prior IT plasticity work. For completeness, we list these dif-

ferences and our assumptions here. First, since we rely on a previous IT population response dataset

(Majaj et al., 2015) to create a generative IT model and establish the link between IT population

activity and human object recognition performance, we rendered test images from the same 3D

objects as Majaj et al., 2015 with background variation and cover trials to prevent from pixel match-

ing in human object discrimination tasks. We assumed that the IT neurons are not making net unsu-

pervised changes during each test phase in their image preference patterns as a result of the image

background or randomly interleaved cover image, and therefore, the net learning effect does not

depend on what is shown during each test phase. Second, and related, we assumed that the IT gen-

erative model could reasonably approximate the variations in IT responses caused by changes in

background clutter. Third, the human discrimination tasks are in the lower d’ regime compared to

the images used in the prior electrophysiology work. We assumed that the learning rate estimated

in the high d’ regime for an IT population is generalizable to IT neural plasticity in this regime.

Because the model predictions turned out to be surprisingly accurate, we take these differences and

the corresponding assumptions (above) as a strength of this study rather than as a weakness, yet the

differences do admit the possibility that a fortuitous coincidence in assumption errors led to accurate

model predictions rather than our preferred interpretation that the assumptions and the model are

all approximately correct. Future neural recordings in non-human primates with behavioral learning

measurement could be helpful to directly validate the link suggested by our model using the exact

same objects and test images as the ones in our human psychophysics.

Our study tested unsupervised learning effects for multiple types of object discriminations (Fig-

ure 6). However, because learning effects are easiest to measure in the initial task difficulty regime

of subordinate-level discrimination (Figure 6), we focused much of the psychophysical testing here

on face discrimination tasks. This choice was only for convenience, and none of the results here or in

prior psychophysical work (Cox et al., 2005; Wallis and Bülthoff, 2001) suggest that

temporal continuity-induced changes in face discrimination are different than those of any other sub-

ordinate object discriminations. However, it is well established that IT neurons that respond more to

faces than other objects are strongly spatial-clustered within both the monkey and the human ventral

stream (Kanwisher et al., 1997; Tsao et al., 2003), and those neurons often have responses that

could be used to support discrimination behavior among different faces (Chang and Tsao, 2017).

Do our results imply that IT neurons within these large clusters are more (or less) susceptible to
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unsupervised plasticity than other IT neurons with face discrimination signals that are not clustered?

No, the results here do not add evidence for or against those hypotheses. Briefly, the IT-to-behav-

ior-linking model used here assumes that each task will be driven by the IT neurons that are most

useful for that task, as discovered by linear classifiers (Majaj et al., 2015). This linking model does

not explicitly care if the IT neurons are clustered or not. The null hypothesis here is that all IT neurons

have equal plastic potential, regardless of if they are strongly clustered (‘face patch’) or not (with the

degree of observed plasticity then depending only on the visual input statistics). Alternative hypoth-

eses are that neurons within IT face patches have higher (or lower) plastic potential than other IT

face-encoding neurons or other IT neurons in general. Our results are consistent with the null

hypothesis (i.e., all IT neurons equally potentially plastic), provided that the average plasticity rate is

in line with the average IT plasticity rate observed in the prior monkey studies. More targeted future

neurophysiology experiments could test these specific alternative hypotheses.

Tolerant object recognition and temporal continuity-driven
unsupervised learning
Human (and monkey) visual object recognition is highly tolerant to object viewpoint, even under

short, but natural, viewing durations of ~200 ms referred to as ‘core object recognition’ (COR)

(DiCarlo et al., 2012). Much evidence suggests that this ability derives from neural non-linear proc-

essing (and thus neural re-representation) of the incoming image along the ventral visual stream,

and some ANN models have become reasonably accurate emulators of that non-linear processing

and of its supported COR behavior (Cadieu et al., 2014; Krizhevsky et al., 2017; Kubilius et al.,

2018; Yamins et al., 2014). However, because the ‘learning’ of those models is highly non-biological

(in the sense that millions of labeled images are used to explicitly supervise the learning), a key ques-

tion remains completely open: how does the ventral stream develop its non-linear processing

strategy?

One proposed idea is that, during postnatal development and continuing into adulthood,

naturally occurring temporally continuous visual experience can implicitly instruct plasticity mecha-

nisms along the ventral stream that, working together, lead to the transform-invariant object repre-

sentation (Berkes and Wiskott, 2005; Einhäuser et al., 2005; Földiák, 1991; Wallis et al., 2009).

Intuitively, the physics of time and space in our natural world constrains the visual experience we

gain in everyday life. Because identity-preserving retinal projections often occur closely in time, the

spatiotemporal continuity of our viewing experience could thus be useful to instructing the non-lin-

ear processing that in turn supports highly view-tolerant object recognition behavior. Under this

hypothesis, objects do not need to be labeled per se, they are simply the sources that statistically

‘travel together’ over time.

We are not the first to propose this overarching hypothesis or variants of it as the theoretical idea

dates back to at least ~1960 (Attneave, 1954; Barlow, 1961). Földiák suggested that the internal

representation should mimic physical entities in real life, which are subject to continuous changes in

time (Földiák, 1990; Földiák, 1991). This process is purely unsupervised and achieves transforma-

tion invariance by extracting slow features from quickly varying sensory inputs (Berkes and Wiskott,

2005; Sprekeler et al., 2007; Wiskott and Sejnowski, 2002). A range of mathematical implementa-

tions of learning rules (Berkes and Wiskott, 2005; Földiák, 1991; Isik et al., 2012; Körding et al.,

2004; Wiskott and Sejnowski, 2002) all include variants of this same conceptual idea: to achieve

response stability of each neuron over time (while also maintaining response variance over the full

population of neurons). Various synaptic plasticity mathematical rules and associated empirical

observations support this form of unsupervised learning: Hebbian learning (Hebb, 1949; Föl-

diák, 1991; Löwel and Singer, 1992; Paulsen and Sejnowski, 2000), anti-Hebbian learning (Föl-

diák, 1990; Mitchison, 1991; Pehlevan et al., 2017), BCM rule (Bienenstock et al., 1982;

Toyoizumi et al., 2005), and spike-timing-dependent plasticity (Caporale and Dan, 2008;

Markram et al., 1997; Rao and Sejnowski, 2001). This prior work showed that unsupervised learn-

ing of neural representations of objects through temporal continuity was possible, at least in theory.

Human psychophysics studies have provided empirical evidence supporting the role of unsuper-

vised temporal contiguity plasticity in visual object recognition. Wallis and Bulthoff found that unsu-

pervised exposure to temporal image sequences of different views of different faces led

to performance deficits compared to sequences of the same face (Wallis and Bülthoff, 2001;

Wallis and Bülthoff, 1999). They also pointed out that these results were only observed in similar
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face pairs (i.e., low d’) rather than very distinct faces (i.e., higher d’). Cox et al. showed that

‘swapped’ unsupervised experience of pairs of images across saccades could reduce (‘break’) posi-

tion tolerance of object discrimination (Cox et al., 2005). Balas and Sinha showed that observing

object motion can increase both generalization to nearby views and selectivity to exposed views

(Balas and Sinha, 2008). These behavioral observations revealed that unsupervised temporal conti-

guity is constantly contributing to the tolerance of object recognition behavior, even in adults, and

thus it must be inducing some kind of underlying neural changes somewhere in the brain.

Our human psychophysical results reported here extend this prior work in three ways. First, we

measured the learning effects over prolonged periods of time, which allowed us to test for accumu-

lation and saturation. Second, we found that the behavioral learning effect is reversible (Figure 2C).

Third, we found that this unsupervised learning effect depended on initial task difficulty, which might

explain why some studies report stronger effects than others. For example, Wallis and Bulthoff found

that the learning effects on view tolerance were only observed in similar face pairs rather than very

distinct faces (Wallis and Bülthoff, 2001), and those similar face pairs have initial d’ that happens to

reside in the mid-range where we predict/observe the largest behavioral effects (Figure 6B). Third,

and most importantly, we designed our unsupervised visual statistical manipulations in the same way

as previous monkey neurophysiology experiments, which allowed us to quantitatively compare our

human behavioral results with prior monkey neuronal results.

Because IT is, among other ventral stream areas, thought to most directly underlie object discrim-

ination behavior (DiCarlo et al., 2012; Ito et al., 1995; Rajalingham and DiCarlo, 2019) and IT plas-

ticity has been found in many studies (Baker et al., 2002; Logothetis et al., 1995; Messinger et al.,

2001), reviewed by Op de Beeck and Baker, 2010, it is natural to ask if temporally contiguous

unsupervised experience also leads to plastic changes in IT neurons. Miyashita and colleagues

showed that neurons in the temporal lobe shape their responses during learning of arbitrarily paired

images such that each neuron’s response becomes more similar to images that were presented

nearby in time (Miyashita, 1988; Miyashita, 1993; Naya et al., 2003; Sakai and Miyashita, 1991).

Li and DiCarlo directly tested the role of unsupervised visual experience in IT neuronal tolerance by

manipulating the identities and properties of objects presented consecutively in time (Li and

DiCarlo, 2008; Li and DiCarlo, 2010). They found that, over ~1.5 hr of unsupervised exposure of

‘swapped’ temporal statistics, the size and position tolerance of IT neuronal responses were signifi-

cantly modified, and that these changes were not reward or task dependent (Li and Dicarlo, 2012).

Qualitatively similar temporal continuity-dependent neuronal plasticity has also been observed in

rodents during development (Matteucci and Zoccolan, 2020).

Although prior experimental work seemed qualitatively consistent with the overarching theoreti-

cal idea, it did not demonstrate that the behavioral learning effects could be explained by the IT

neural effects. The results of our study here show that those two effects are quantitatively consistent

with each other – the behavioral effects can be largely accounted for by the IT neural effects. While

this extends the work of others in the area (see Introduction), some studies have reported null results

or have proposed alternative mechanisms. Okamura et al. showed that continuous motion or view

presentation is not necessary to form tolerance, rather, enough exposure to different views (even in

random sequence) can support view-invariant object recognition (Okamura et al., 2014). This evi-

dence suggests an alternative, or additional, mechanism to form tolerant object recognition in addi-

tion to temporal continuity. Van Meel and Op de Beeck investigated whether temporal continuity

experience can alter size-tolerance representation in human LOC using fMRI and reported no

observable effects (Van Meel and Op de Beeck, 2020). However, because no behavioral learning

effects are reported and fMRI signal has limited spatial and temporal resolution, this null result may

not be inconsistent with the results presented here. Looking in rodents, Crijns et al. tested the tem-

poral contiguity hypothesis in adult rat primary visual cortex and found that the tolerance in orienta-

tion selectivity across spatial frequency was not affected by temporal continuity manipulation

(Crijns et al., 2019), which may be caused by a different representation mechanism in lower levels

of visual hierarchy. On the other hand, Matteucci and Zoccolan reported that reduced temporal con-

tinuity experience in early postnatal life led to a loss of complex cell functional properties in rat V1

(Matteucci and Zoccolan, 2020). In sum, the literature is still highly varied and future neurophysio-

logical and behavioral experiments are necessary to test the boundary conditions of temporal conti-

guity induced effects.
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Future directions
We believe that models similar to the one proposed here will be an important future direction in har-

monizing results across spatial scales (neurons to behavior) and across species (rodents to primates

to humans), such as the studies outlined above. A second future direction is to extend our current

overall model to other modalities, like view invariance or position invariance. This could be done by

collecting further psychophysical data, adding proper tuning kernels to the current generative IT

model, and using the same IT plasticity rule and decoding model. A third future direction is to

extend our current model to other objects beyond those that have been tested in monkeys and

humans. This could be achieved through testing new IT population responses to new and old objects

and then embedding the new objects in the MDG model of the IT population representation space

based on neuronal population response similarity. Alternatively, we can use image-computable deep

ANN models that quite accurately predict ventral stream neuronal population responses

(Kubilius et al., 2018; Yamins et al., 2014) and use the ‘IT’ layer to build a much larger representa-

tion space of objects. A fourth future direction is to develop new unsupervised learning algorithms

that implement some of the core ideas of temporal contiguity learning, but are scaled to produce

high-performing visual systems that are competitive with state-of-the-art neural network systems

trained by full supervision. Many computational efforts have touched on this direction

(Agrawal et al., 2015; Bahroun and Soltoggio, 2017; Goroshin et al., 2014; Higgins et al., 2016;

Kheradpisheh et al., 2016; Lotter et al., 2016; Srivastava et al., 2015; Wang and Gupta, 2015;

Whitney et al., 2016), and some are just beginning to make predictions about the responses along

the ventral stream (Zhuang et al., 2021). A key next step will be to put those full-scale models to

experimental test at both the neurophysiological and behavioral levels.

Materials and methods

Datasets from prior work
To build a quantitative linking model that predicts unsupervised learning effects in humans from neu-

ronal response in IT, we used three experimental datasets: (1) human data: human psychophysics

performance data collected with Amazon Mechanical Turk; (2) IT population data: simultaneous

recordings of 168 sites with multi-electrode Utah array recordings implanted in monkey IT (from a

previous study; Majaj et al., 2015); and (3) IT single-site learning data: multi-unit activity recorded

with single electrodes in monkey IT (from a previous study; Li and DiCarlo, 2010). All processed

data are available at https://github.com/jiaxx/temporal_learning_paper (copy archived at swh:1:rev:

bb355bb96286db2148c3abdc8f71b5880f657c5f), Jia, 2021.

IT population dataset
Multi-electrode array (Utah arrays) recordings from two awake macaque monkeys provided 168

multi-unit IT neural sites to 64 objects (5460 high-variation naturalistic images) for modeling use.

Image presentation was 100 ms, and each image was repeated between 25 and 50 times. Spike

counts were binned in the time window 70–170 ms post stimulus presentation and averaged across

repetitions to produce a 5760 by 168 neural response pattern array. The 64 exemplar objects come

from eight categories (animals, boats, cars, chairs, faces, fruits, planes, and tables). Images were

generated by placing a single exemplar object on a randomly drawn natural scene background at a

wide range of positions, sizes, and poses. Images were presented at 8˚ diameter at the center of

gaze to awake fixating animals in a rapid serial visual presentation (RSVP) procedure (horizontal black

bars indicate stimulus presentation period). See Majaj et al., 2015 for details.

IT plasticity dataset
Physiology data of unsupervised IT plasticity effects measured in multi-unit activities recorded at

each single electrode in macaque monkey IT cortex were reanalyzed from Li and DiCarlo, 2010

(n = 42 multi-unit activity (MUA) sites). We refer to these as ‘neural sites.’ The FR of sorted units was

tested in response to preferred (P) and non-preferred (N) objects, each presented at a range of

sizes, and were re-tested after different amounts of unsupervised exposure to evaluate the effect of

that exposure on those response measures. See (Li and DiCarlo, 2010) for details.
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Image generation
We used the same 3D object models as previous published IT-behavior study (Majaj et al., 2015)

and applied the same rendering mechanism (ray-tracing software) to each 3D object while paramet-

rically varying its position, rotation, and size, and projected on a randomly chosen unique natural

background (out of a pool of 130 images) to generate new test image examples. All images were

achromatic. The ground truth of each image was the identity of the generating 3D model, and this

was used to evaluate performance accuracy. This naturalistic image generation allows us to gain full

control of all the object-related metadata in the images while preserving a relatively natural COR

experience.

For each object, we predefine a ‘baseline view’ (i.e., exact center of gaze, size of ~2˚ or 1/3 of the

diameter of the image, and canonical pose; see Methods of Majaj et al., 2015; Rajalingham et al.,

2018). Variations in size, position, and rotation are transformations relative to baseline view of the

object. Since our focus here was unsupervised learning of size-tolerant object selectivity, we inten-

tionally introduced more images that only vary in size to measure size tolerance. Medium-sized

objects were the ‘baseline’ size (~2˚). Small-sized objects were 0.5� of baseline (~1˚). Big-sized

objects were 2� that of baseline (~4˚). All test images for different sizes were generated with ran-

dom naturalistic backgrounds. We thus created a set of 240 ‘size test’ images per object (i.e., 80

images per object at each of the three test sizes). The final test images were each 512 � 512 pixels

and were always presented to the subject at a total extent of ~7˚ of visual angle at the center of

gaze (as in the prior neurophysiology studies above).

To neutralize possible size-specific attentional effects and possible size-specific adaptation

effects, we presented these ‘size test’ images intermixed with other ‘cover’ images of the same

objects. These cover images were generated using mild variation in all of the object view parame-

ters. Specifically, we sampled randomly and uniformly from the following ranges: [�1.2˚,+1.2˚] for

object position in both azimuth (h) and elevation (v); [�2.4˚,+2.4˚] for rotation in all three axes; and

[x0.7, x1.3] for size. These cover images were mixed randomly with the ‘size test’ images (above) at

a ratio of 1 cover image per ‘size test’ image to generate a set of psychophysical test images for

each subject (illustrated in Figure 1—figure supplement 1B). The behavioral results from the cover

images were not part of the analyses.

Human psychophysics and analysis
All human experiments were done in accordance with the MIT Committee on the Use of Humans as

Experimental Subjects (COUHES). We used Amazon Mechanical Turk (MTurk), an online platform

where subjects can participate in non-profit psychophysical experiments for payment based on the

duration of the task. In the description of each task, it is clearly stated that participation is voluntary

and subjects may quit at any time. Subjects can preview each task before agreeing to participate.

Subjects will also be informed that anonymity is assured and the researchers will not receive any per-

sonal information. MTurk requires subjects to read task descriptions before agreeing to participate.

If subjects successfully complete the task, they anonymously receive payment through the MTurk

interface. Since it is easier and faster to recruit subjects through MTurk, we can collect a much larger

dataset than traditional in-lab human psychophysics.

A total of 505 (174 subjects in Figure 2 and 331 subjects in Figure 6) subjects successfully com-

pleted our tasks published through Amazon’s Mechanical Turk. Subjects who failed to complete the

task or follow the instructions were rejected. Aspects of COR performance were measured based on

the behavioral report following each test image presentation (Rajalingham et al., 2018). Previous

work compared the results of COR tasks measured in the laboratory setting with controlled viewing

with results measured via Amazon MTurk and found virtually identical results (Pearson correlation

0.94 ± 0.01; from Majaj et al., 2015).

Each behavioral experiment contained two types of phases: a test phase in which specific aspects

of object discrimination performance were measured (see below) and an exposure phase in which

pairs of temporally contiguous images were experienced (see Figure 1). The main experiment con-

sisted of five test phases (200 trials each; 6–8 min) and four interleaved exposure phases (400 expo-

sure events each; 12–20 min) that together allowed us to measure exposure-induced changes in

size-specific object discrimination over time (total experiment time ranged from 90 min to 120 min).
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Test phase
Our goal was to measure the discriminability of targeted (exposed) pairs of objects at targeted

(exposed) sizes (and, as references, we also measured discriminability for control object pairs and for

target objects at a non-exposed size). Conceptually, each such discrimination sub-task (size-specific

object discrimination task) is a generated set of images from object A at a specific size that must be

discriminated from a generated set of images of object B at a specific size, and mapped to the same

object at a medium size (e.g., see Figure 1B, choice images). For clarity, we note that, given this

design, the only variation in each of these sub-task image test sets was the image background.

These size-specific sub-tasks were randomly interleaved with cover trials to disguise this underlying

fact from the subject (see Figure 1—figure supplement 1B).

To measure performance on each sub-task, we used a 2AFC design. Each 2AFC trial started with

a central fixation point. Subjects were requested to fixate the black fixation point because the test

image was always presented briefly at that location and they might miss it otherwise. After 500 ms,

the fixation dot disappeared and a test image appeared centered at dot location (center of the

screen) for 100 ms, followed by the presentation of two ‘choice’ images presented on the left and

right of the screen (Figure 1A). One of the choice images always matched the identity (or category)

of the object that was used to generate the test image and was thus the correct choice, and its loca-

tion was randomly assigned on each trial (50% on the right and 50% on the left). After mouse-click-

ing a choice image, the subject was given another fixation point (i.e., the next test phase trial

began). No feedback on correctness of the choice was given.

To measure size-specific discrimination performance, we created size-specific 2AFC sub-tasks.

Specifically, each sub-task was a balanced (i.e., 50%/50%) set of size-specific test images generated

from objects A and B (see above), and the two choices presented after each test image were ‘clean’

examples of objects A and B at a standard (‘medium’) size (Figure 1A).

For each subject, the test images were pseudorandomly drawn from a test image pool that con-

tained the desired number of ‘size test’ images and cover images (Figure 1—figure supplement

1B). Among the 200 trials (50 test images of each test object; four objects in total), 40% contained

the ‘size test’ images (20 for each object; 10 for small and 10 for big), 10% contained baseline views

(medium size; five for each object), and the remaining 50% test images were ‘cover images’ (see

above) that were not used in analyses (see Figure 1—figure supplement 1B for example test

images). The number of test images for target and control object pairs was thus balanced. The num-

ber of test images for small and big sizes was also balanced regardless of exposure type. As a result,

for each subject, we created six size-specific 2AFC sub-tasks in total (three different sizes for each

object pair) regardless of exposure type. The number of test images for target and control face pairs

at different sizes in each test phase is specified in Figure 1—figure supplement 1B.

To evaluate exposure-induced learning effects, we only calculated the discrimination performance

of three exposure-relevant sub-tasks (preplanned, Figure 1B): (1) the sub-task with exposed (target)

objects at the exposure-manipulated size (Figure 1B, red or blue d’); (2) the sub-task with non-

exposed (control) objects at the exposure-manipulated size (Figure 1B, black d’); and (3) the sub-

task with exposed (target) objects at the non-manipulated size (Figure 1B, dashed black d’). For

example, one subject might have been randomly assigned to exposure type = (experiment u1,

swapped condition), target size = (big size), target objects = (face A, face B), control objects = (face

C, face D). In this example, each test phase aimed to measure performance (d’) on three specific

sub-tasks: [face A big vs. face B big], [face C big vs. face D big], and [face A small vs. face B small].

The sizes of the subject groups are provided in Results. The test trials for size and objects were

always balanced in each subject group. In Figure 2, the subject groups differ in the exposure type

(three subject groups). In each of these three groups, the target exposure size was the big size, and

within each group, the specific face objects for target and control were randomly selected for each

subject. In Figure 6, the 13 subject groups correspond to the 13 sub-tasks that were targeted for

exposure (see below). Within each subject group, the targeted type of object (i.e., face or basic

level) and the targeted exposure size (i.e., medium-big or medium-small) was the same for all sub-

jects, and within each group, the specific objects for target and control were randomly selected

within the targeted type.

We computed the d’ for each exposure-relevant sub-task (typically three d’ values for each sub-

ject group; see Figure 1B) based on the population (pooled) confusion matrix of the entire subject
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group. For each sub-task, we constructed a 2 � 2 confusion matrix by directly filling the behavioral

choices into hit, miss, false alarm, and correct rejection according to the stimuli and response of

each trial (Figure 1B). From the pooled confusion matrix, we computed the d’ for each sub-task. We

used standard signal detection theory to compute d’s from the confusion matrix (d’ = Z(TPR) – Z

(FPR), where Z is the inverse of the cumulative Gaussian distribution function, and TPR and FPR are

true-positive and false-positive rates, respectively). The d’ value was bounded within �7.4 to 7.4 (via

an epsilon of 0.0001). The mean d’ for each sub-task of each subject group was determined by aver-

aging the d’ calculated from each bootstrapped subjects sample (which converges to the d’ of the

pooled confusion matrix). The error bar (bootstrapped standard error) of performance represents

the standard deviation of population pooled d’ over all bootstrap samples (1000 samples in each

case), which is performed by sampling with replacement across all trials (aggregated for each subject

group). p-value is directly estimated from the bootstrapped distribution of performance change by

comparing to no change condition, which is by definition 0.

Exposure phase
Each exposure trial (a.k.a. exposure ‘event’) in the exposure phase was intended to deliver a pair of

temporally contiguous images at the center of gaze. Each trial initiated with the presentation of a

small, central black dot (~0.5˚), and the subject was required to mouse-click on that dot (this is

intended to naturally bring the center of gaze to the dot). Immediately after a successful mouse-click

(within 0.5˚ of the dot), two images were presented sequentially at the location of the black dot.

Each image was shown for 100 ms with no time lag between them. After the event, the black dot

reappeared at a new, randomly chosen location (out of nine possible locations) on the screen (i.e.,

the next exposure trial began). The details of those images are described below in the context of

the specific experiments carried out.

Because we here focused on the effects of unsupervised exposure events on size tolerance, the

size of object in each of the two sequential images was always different and always included the

medium (‘baseline’) size: either big-sized objects paired with medium-sized objects or small-sized

objects paired with medium-sized objects. In either variant, the order of those two images was coun-

terbalanced, as in Li and DiCarlo, 2010 (e.g., approximately half of the events transitioned from

medium to big objects and the other half from big to medium objects; signified by the double-

headed arrows in Figure 1B).

Flavors of unsupervised exposure
Following prior work (Cox et al., 2005; Li and DiCarlo, 2010; Wallis and Bülthoff, 2001), there are

two basic flavors of unsupervised exposure. The first flavor is referred to as the swapped exposure,

in which the two images within each exposure event are generated from different objects (here, at

different sizes). Based on prior work (Cox et al., 2005; Wallis and Bülthoff, 2001), this exposure fla-

vor is expected to gradually ‘break’ (disrupt) size-tolerance discrimination of those two objects. The

second flavor is non-swapped exposure, in which the two images are generated from the same

object (here, at different sizes). While this have been less studies in human psychophysics, based on

prior IT neurophysiology results (Li and DiCarlo, 2010), this exposure flavor is expected to gradually

build size-tolerant discrimination of those two objects.

Experimental designs
Our main experimental goal was to test the directions, magnitudes, and temporal profiles of

changes In size-tolerant object discrimination (assessed in the test phases, see above) resulting from

different types of unsupervised exposure conditions (Figures 1 and 2). To do that, we deployed the

two flavors (above) in three types of unsupervised experience types (u), and each subject was tested

in only one of those three types. The first type (u1) was a series of swapped exposure epochs (intui-

tively, this aims for maximal ‘breaking’). The second type (u2) was a series of non-swapped exposure

epochs (intuitively, this aims for maximal ‘building’). The third type (u3) was two swapped exposure

epochs followed by two non-swapped exposure epochs (intuitively, this aims to test the reversibility

of the unsupervised learning).

Each type of experiment lasted for about 90 min, and each consisted of nine phases in total: five

test phases (200 test images each) and four exposure epochs (400 exposure events in each epoch;
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Figure 1A). This experiment was done with face objects only in a total of 174 subjects over all condi-

tions (u1 = 102 subjects, u2 = 36 subjects, u3 = 37 subjects).

Our secondary experimental goal was to study how learning effect depends on the perceptual

similarity of the exposed objects. To do this, we chose pairs of objects to cover a wide range of ini-

tial discrimination difficulties. Intuitively, it is easier to discriminate an elephant from a pear than it is

to discriminate an apple from a pear. Specifically, we chose a total of 13 size-specific object pairs

selected from a set of eight face objects (n = 10 pairs) and six basic-level objects (n = 3 pairs). For

subjects being exposed to faces, the control objects were also faces; for subjects exposed to basic-

level objects, the control objects were other basic-level objects. These 13 pairs were selected based

on pilot experiments that suggested that they would span a range of initial discrimination perfor-

mance. Indeed, when tested in the full experiment (below), we found that mean human initial dis-

crimination difficulties ranged broadly (d’ range: 0.4–2.6, based on the first test phase). We thus ran

13 groups of subjects (i.e., one group per target object/size pair) with ~20–40 subjects per group.

Because the goal here was to test the magnitude of size-specific learning (not the time course), we

tested only the ‘swapped’ flavor of unsupervised experience using just one long exposure epoch

(consisting of 800 exposure events). Each subject was exposed with only one pair of objects and was

exposed to one size variant of the exposure: small-medium-size swapping or medium-big-size swap-

ping. We bracketed that unsupervised exposure with one pre-exposure test phase (200 trials) and

one post-exposure test phase (also 200 trials). The learning effect was always measured at the

exposed size (e.g., if exposed with small-medium swapping, the learning effect was measured as the

performance change of small-size discrimination task of the exposed object pair), subtracting the

performance change for control object pair at the exposed size (all exactly analogous to Figure 2A).

When conducting multiple tests of the same null hypothesis and considering any one of those

tests to reject that null hypothesis, this results in an increase in the likelihood of incorrectly rejecting

the null hypothesis by pure chance. To set an appropriate null rejection level, a correction for multi-

ple comparison (e.g., Bonferroni correction or FDR) needs to be conducted, which corrects the alpha

level for each test to account for the number of tests of the same null hypothesis. In our testing of

learning effects over exposure amount (Figure 2), we are not asking whether the learning effect for

any exposure amount is different from 0, which would require multiple-comparison correction for

number of tests. Instead, each point is a single test of a different null hypothesis: ‘There is no learn-

ing effect at exposure amount x.’ These results demonstrate how learning effect changes as a func-

tion of exposure time for different exposure types. Therefore, we do not believe that the multiple-

comparison correction is applicable in this situation. In the statistical test for learning effect of differ-

ent tasks (Figure 6), the dependent variables are the observed learning effects for tasks that differ in

initial task difficulty. We are asking whether the learning effect that is measured at 800 exposures for

a given task is significantly different from 0 (the null hypothesis for all tasks). Thus, there is only one

comparison for each dependent variable; therefore, we believe that a multiple-comparison correc-

tion is not necessary here. If we were asking whether there is any learning effect observed for any

one of the measured tasks given the exposure, then a multiple-comparison correction would be nec-

essary, but that is not the question being asked here. Instead, we are simply showing the trend of

the effect size for each tested task, with bootstrapped standard deviations of the mean, to demon-

strate the relationship between initial task difficulty and the learning effect size.

Generative IT model
We modeled the IT neuronal population response based on the IT population dataset collected

from monkey IT cortex with a MDG model. This model assumes that the distribution of IT population

response (the distribution the mean responses of individual IT neurons to all images of an object) to

each object is Gaussian-like. We tested this hypothesis with a normality test and found that 81.25%

(52 out of 64 distributions for 64 objects) of the IT population response distributions were Gaussian

(reject when p<0.01). This MDG model preserves the covariance matrix of neuronal responses to all

64 objects that have been tested in monkey IT cortex. A random draw (of a 64 � 1 vector) from the

MDG is conceptualized as the average response (over image repetitions) of a simulated IT recording

site to each of the 64 objects. To generate the simulated IT tuning over changes in object size, for

each simulated IT site, we multiplied (outer product) that 64 � 1 vector with a randomly chosen size-

tuning kernel (1 � 3 vector) that was randomly sampled from a batch of size-tuning curves (Fig-

ure 3—figure supplement 1B) that we had obtained by fitting curves to real IT responses across
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changes in presented object size (n = 168 recording sites; data from Majaj et al., 2015). This gives

rise to perfectly size-tolerant simulated IT neurons (i.e., by construction, the tuning over object iden-

tity and over size are perfectly separable). Note that this produced a population of simulated IT neu-

rons with a broad range of size tuning, but with that range approximating that observed across

actual IT neurons. The distribution of the variance across size (a.k.a. variance across size reflects the

shape of size-tuning curve, e.g., 0 variance corresponds to a flat tuning curve across sizes) is shown

in Figure 3—figure supplement 1C. To introduce more biological realism and to approximate the

fact that each image is presented on a random background, we randomly jittered each value in the

64 � 3 matrix by a zero mean, iid shift of each matrix element (randomly drawn from the distribution

of variance across image exemplars for each object from IT neural data [Figure 3—figure supple-

ment 1D]; s2
clutter). Given this procedure, we could generate a potentially infinite number of simu-

lated IT neurons and their (mean) responses to each and every image condition of interest. We

verified that, even with the simplifying assumptions imposed here, the population responses of simu-

lated IT populations were quite similar to the actual IT neural population responses (in the sense of

image distances in the IT population space [Figure 3B] and variance level [Figure 3D]).

To generate a hypothetical IT neural (model) population, we simply repeated the above process

to obtain the requested number of model neurons in the simulated population (note: the MDG and

the size-tuning kernel pool was always fixed). In addition, when we ‘recorded’ from these neurons (e.

g., in Figure 3A), we additionally added response ‘noise’ that was independently drawn on each

repetition of the same image (s2
repeats; mean zero, variance scaled with the mean to approximate

known IT Poisson repetition ‘noise’; Figure 3—figure supplement 1E).

IT-to-behavior-linking model
To generate behavioral performance predictions from model IT population responses, we applied a

previously defined IT-to-recognition-behavior-linking model (Majaj et al., 2015). In that study, the

authors used actual IT neural population responses to show that a set of possible IT-to-behavioral-

linking models could each accurately describe and predict human performance on all tested recogni-

tion tasks within the reliability limits of the data. We here used one of the simplest, most biological

plausible of those models – a linking model that seeks to infer the test image’s true label by comput-

ing the Pearson correlation between the mean IT population response to each possible object class

(computed on the IT response to the training images) and the IT population response evoked by the

current test image (note that test images are never used in the training of decoders). In other words,

the model’s ‘choice’ of object category for each test image was taken to be the choice object whose

(simulated) IT population mean (over the training images) was closest to the population vector

evoked by the current test image. The only difference from the prior work (Majaj et al., 2015) is that

here we used simulated IT neurons (see Generative IT model) to drive the ‘behavior’ of the model.

(Note that the linking model has two key hyperparameters [see Results] and, for each simulation run,

we held those constant.)

Since the model (IT population + linking model) could now be treated as a behaving ‘subject,’ we

analyzed the behavioral choices in exactly the same way as the actual human behavioral choices to

arrive at d’ values that could be directly compared (i.e., generate a confusion matrix for each 2AFC

sub-task, see above).

Similarly, to test a new model ‘subject,’ we simply generated an entirely new IT model population

(see above) and then found the parameters of the IT-to-behavior-linking model for that subject.

To simulate human lapses (see Results), we introduced a (fixed) percentage of trials in each of the

‘behavioral’ confusion matrices where model responses were randomly chosen. Note that, when ini-

tial d’ is below ~2, the lapse rate most consistent with the data (9%) has little influence on measur-

able performance (see Figure 6A) and thus only a minor effect on the model in Figure 5. Therefore,

all predictions in Figure 5 were made with 0% lapse rate.

Unsupervised IT plasticity model
We built a descriptive (non-mechanistic) learning rule with the same fundamental concept as previ-

ous computational models of temporal continuity learning (Földiák, 1990; Földiák, 1991;

Sprekeler et al., 2007; Wiskott and Sejnowski, 2002), except its mathematical implementation. In

our setup, there are always only two images in each exposure event (a leading image and a lagging
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image). Our plasticity rule states that, after each exposure event, the modification of the mean

FRresponse to the leading image is updated as follows:

DFRleading ¼ aðFRlagging �FRleadingÞ

This plasticity rule tends to reduce the response difference between two exposed images (i.e., it

tends to create response stability over time, assuming that the statistics of the future are similar). In

our overall model, we apply this plasticity rule to each and every simulated IT neuron (true) after

each and every exposure event. Note that, under repeated exposure events, the FR to all images

will continue to change until there is no difference in responses to the leading and lagging images,

which means that the responses will eventually reach a steady state.

Compared with previous plasticity rules (e.g., Hebbian rule) for temporal continuity learning, our

plasticity rule is relatively simple. Our plasticity rule updates each IT unit’s output FR directly rather

than its input weights (Földiák, 1991). Based on immediate activity history, our learning rule continu-

ously changes each unit’s output by pulling its responses to consecutive images closer until reaching

steady state. This learning rule has several features. First, it is temporally asymmetric, which means

that the direction of rate change of the leading image depends on the sequence of leading and lag-

ging image. In other words, the response to the lagging image is going to pull the response to the

leading image toward it. However, since our experiments randomized the leading and lagging

images on each exposure trial, this results in a change in the response to both images rather than an

asymmetric change. Second, the effect of our plasticity rule is constrained to exposed image pairs

and ignores any correlation in the neural representation space. Even though we do not yet have

experimental data to accurately generalize the plasticity rule further than what has been presented

in this paper, it is potentially generalizable to other types of tolerance (position, pose) and to other

exposure paradigms.

The neural plasticity data were collected by selecting preferred (P) and non-preferred (N) images

for each unit, which are two different objects (Li and DiCarlo, 2010). We set the neural plasticity

rate of the simulated neurons to match that observed in biological IT neurons. To do this, we

focused on the same initial high d’ regime as the neural plasticity data were collected. Specifically,

for each simulated IT site, objects P and N were chosen independently out of the 64 objects based

on its mean response to each object (most likely to be in the high d’ regime). The plasticity rule was

applied to each simulated site as it underwent unsupervised exposure, with the neural response

function updated based on its responses to images containing objects P and N at the exposed sizes

(see Materials and methods: Generative IT model for details). Because of the initial randomness in

the size-tuning kernel selected for each neural site (Figure 3—figure supplement 1B, C) and the

clutter variance introduced for the site’s responses to different image exemplars (Figure 3—figure

supplement 1D), the response profile of each simulated neuron is unique and thus the updated

direction during simulated unsupervised learning is not always in the same direction across the pop-

ulation. The averaged learning effect across all simulated neurons was then computed (as if these

neurons had been observed in an experiment) and that simulated learning effect was compared to

the averaged learning effect observed in the biological IT neurons. The plasticity rate was optimized

to minimize this difference. The (fixed) plasticity rate determined in this way could then be used with

the plasticity rule to compute the expected individual IT neuronal response pattern changes to any

pair images for which the image-driven responses are both known. In this study, that means we

could apply it to any images in the space of the generative model of IT, but we note that this same

plasticity rule could be applied to other models of IT responses (e.g., those from contemporary

image-computable models; Kubilius et al., 2018; Yamins et al., 2014). However, it is important to

note that the learning rate value is determined by the IT population statistics and the plasticity rule

chosen here and thus should not be taken as a universal value. Changes in the statistics of the simu-

lated IT population (i.e., covariance matrix, variance across sizes or clutter variance, etc.) can influ-

ence the initial state of the IT population, and as a consequence influence both plasticity rate value

and the predicted changes for each simulated IT neuron.

The plasticity rate that best matches neural data is 0.0016 nru per exposure event

(nru = normalized response units). The normalized response is calculated by D(P – N)/(P – N), where

P and N represent the z-scored FR (across all objects) to preferred and non-preferred objects.

Z-score is measured in terms of standard deviations from the mean. Therefore, 1 normalized

Jia et al. eLife 2021;10:e60830. DOI: https://doi.org/10.7554/eLife.60830 29 of 34

Research article Neuroscience

https://doi.org/10.7554/eLife.60830


response unit is 1 std of the response (FR) distribution across all tested objects. Since the mean

multi-unit FR is 90 ± 23 spk/s (std across objects) for the IT population across 64 objects, we estimate

that 1 nru is ~23 spk/s. Therefore, 0.0016 nru corresponds to a FR change of ~0.035 spk/s per expo-

sure event, which means that ~30 exposure events of this kind would give rise to 1 spk/s change in P

vs. N selectivity.
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