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The detection of novel stimuli is critical to learn and survive in a dynamic environment. Though novel stimuli 
powerfully affect brain activity, their impact on specific cell types and circuits is not well understood. Disinhibition 
is one candidate mechanism for novelty-induced enhancements in activity. Here we characterize the impact of 
stimulus novelty on disinhibitory circuit components using longitudinal 2-photon calcium imaging of Vip, Sst, and 
excitatory populations in the mouse visual cortex. Mice learn a behavioral task with stimuli that become highly 
familiar, then are tested on both familiar and novel stimuli. Mice consistently perform the task with novel stimuli, 
yet responses to stimulus presentations and stimulus omissions are dramatically altered. Further, we find that 
novelty modifies coding of visual as well as behavioral and task information. At the population level, the direction 
of these changes is consistent with engagement of the Vip-Sst disinhibitory circuit. At the single cell level, we 
identify separate clusters of Vip, Sst, and excitatory cells with unique patterns of novelty-induced coding changes. 
This study and the accompanying open-access dataset reveals the impact of novelty on sensory and behavioral 
representations in visual cortical circuits and establishes novelty as a key driver of cellular functional diversity. 
 
 The processing and prioritization of novel stimuli is 
critical for adaptive behavior in a constantly 
changing world (Rust and Cohen, 2022). Stimulus 
novelty directs attention, enhances perception, 
promotes exploration, and facilitates learning and 
memory (Jaegle et al., 2019; Ranganath and Rainer, 
2003; Schomaker and Meeter, 2015). Novelty is a 
deviation from learned expectations; here we 
distinguish three forms of novelty depending on 
what has been learned, and over what timescale. 
Contextual novelty arises when a rare or unexpected 
stimulus appears among more common, repeated 
stimuli, thus deviating from local stimulus context. 
The omission of a stimulus from an expected or 
predictable sequence is a second form of novelty or 
surprise (Braga and Schönwiesner, 2022). Finally, 

absolute stimulus novelty is defined as the exposure 
to a stimulus that has not been experienced before.  
 
The neural effects of novelty are widespread, 
affecting cortical, subcortical, and neuromodulatory 
systems (Braga and Schönwiesner, 2022; Kafkas and 
Montaldi, 2018; Ranganath and Rainer, 2003; 
Schomaker and Meeter, 2015; Tapper and Molas, 
2020). A common observation across species and 
sensory modalities is that novel stimuli evoke larger 
sensory responses compared to familiar stimuli 
(Ranganath and Rainer, 2003; Schomaker and 
Meeter, 2015). This novelty effect (or it’s inverse, the 
familiarity effect) is observed both at the macro-level 
using techniques such as EEG and fMRI in humans 
(Courchesne et al., 1975; Daffner et al., 2000; Hawco 
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and Lepage, 2014), and at the single cell level using 
single unit recordings in animals (Li et al., 1993; 
Meyer and Rust, 2018; Xiang and Brown, 1998; 
Zhang et al., 2022). Contextual novelty effects such 
as repetition suppression, mismatch negativity, and 
deviance detection are thought to arise through 
adaptation (Braga and Schönwiesner, 2022; Garrido 
et al., 2009; Grill-Spector et al., 2006; Hu et al., 2021; 
Nelken and Ulanovsky, 2007). However, the cell 
types and circuits that underlie the lifetime history-
dependent effects of absolute stimulus novelty are 
unknown. 
 
Disinhibition has been proposed as a mechanism of 
stimulus novelty detection (Schulz et al., 2021). An 
emerging body of literature has identified a cortical 
microcircuit with vasoactive intestinal peptide (Vip) 
expressing inhibitory interneurons enhancing the 
activity of excitatory neurons by selectively inhibiting 
somatostatin (Sst) expressing inhibitory 
interneurons (Fu et al., 2014; Karnani et al., 2016; 
Krabbe et al., 2019; Lee et al., 2013; Letzkus et al., 
2015; Pfeffer et al., 2013; Pi et al., 2013). Supporting 
the hypothesis that the Vip-Sst disinhibitory circuit is 
at the heart of novelty processing, Vip neurons are 
activated by novel stimuli (Garrett et al., 2020; 
Melzer et al., 2021). Experiments in the primary 
visual cortex (Hayden et al., 2021), primary auditory 
cortex (Kato et al., 2015; Natan et al., 2017, 2015), 
and in the hippocampus (Arriaga and Han, 2019) 
show that Sst inhibitory neurons are more 
responsive to familiar compared to novel stimuli. 
Familiarity-enhanced responses in Sst cells could 
serve to suppress local excitatory cells in a stimulus-
specific manner, thereby leading to reduced cortical 
responses to familiar stimuli. The absence of this Sst 
cell-mediated inhibition, through Vip-mediated 
disinhibition, may support enhanced excitatory 
responses to novel stimuli, thus gating plasticity and 
triggering the formation of new representations 
(Park et al., 2021; Schulz et al., 2021). However, 
experiments unifying these observations in a single 
paradigm are lacking.  
 
In the visual cortex of mice, neurons not only code 
for visual features, but also for behavioral choices, 
reward expectation, locomotor activity, and 
sensorimotor mismatch (Fiser et al., 2016; Koay et 

al., 2022; Liu et al., 2015; Musall et al., 2019; Niell 
and Stryker, 2010; Pakan et al., 2018; Poort et al., 
2015; Stringer et al., 2019). The extent to which 
novelty affects coding for behavior and task-related 
information is unknown.  
 
Furthermore, excitatory neurons as well as Vip and 
Sst inhibitory subclasses are composed of multiple 
cell types with distinct gene expression patterns, 
morphologies, synaptic connectivity, and intrinsic 
electrical properties (Gouwens et al., 2020, 2019; 
Jiang et al., 2015; Kepecs and Fishell, 2014; Tasic et 
al., 2018; Tremblay et al., 2016; Yao et al., 2021; Zeng 
and Sanes, 2017). We sought to address whether 
different subpopulations of excitatory and inhibitory 
cells are differentially involved in novelty processing.  
 
Here, we measure the effect of absolute stimulus 
novelty on excitatory, Vip, and Sst inhibitory 
populations in the mouse visual cortex during 
visually guided behavior. By recording in the context 
of a visual change detection task (Figure 1), we 
investigated how absolute stimulus novelty 
influenced activity following repeated, expected 
stimulus presentations, unexpected stimulus 
changes, and unexpected stimulus omissions. We 
find changes in population activity that are 
consistent with a role for disinhibition in stimulus 
novelty processing (Figure 2). By modeling the 
relationship of neural activity to behavioral 
responses, locomotion, pupil dynamics, licking, and 
reward consumption, we discover that novelty 
impacts coding for not only sensory but also 
behavioral and task-related information (Figure 3). 
Finally, we demonstrate diversity in novelty-induced 
changes in coding within populations of Vip, Sst, and 
excitatory cells through functional clustering of 
cellular coding across days (Figure 4).  
 
These findings depended on the generation of a 
large-scale standardized dataset using a team 
science approach (de Vries et al., 2020; Siegle et al., 
2021). This public dataset represents a rich substrate 
for mining neural activity associated with stimulus 
and behavioral processing, serving as an open 
resource for further discovery. The full dataset can 
be accessed at https://portal.brain-
map.org/explore/circuits/visual-behavior-2p.  
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Measuring the impact of stimulus novelty on 
visual cortical circuits 
 
To test the impact of stimulus novelty on neural 
coding by distinct cell types in the context of an 
active behavioral task, we used the Allen Brain 
Observatory 2-photon calcium imaging pipeline to 
collect an open-access dataset using standardized 
experimental procedures (de Vries et al., 2020) (Fig. 
1a). We focused on neural populations involved in 
the cortical Vip-Sst disinhibitory circuit using 
transgenic mice that expressed the genetically 
encoded calcium indicator GCaMP6f in excitatory 
neurons (Slc17a7-IRES2-Cre;Camk2a-tTa;Ai93), Sst 
inhibitory neurons (Sst-IRES-Cre;Ai148), or Vip 
inhibitory neurons (Vip-IRES-Cre;Ai148) (Fig. 1b,c). 
Using both single and multi-plane 2-photon imaging, 
we measured activity from primary (VISp) and 
secondary (VISl) visual areas, across multiple cortical 
depths (Extended Data Fig 1a). In this study, we 
focused on 134 unique fields of view in 66 mice 
during 202 imaging sessions (14,495 total cells; 
12,826 excitatory cells, 468 Sst cells, 1,201 Vip cells). 
 
Prior to imaging, mice learned a visual change 
detection task through an automated training 
procedure (Groblewski et al., 2020)(Fig. 1d, 
Extended Data Fig. 1b). The final stage used a set of 
8 natural scene images that became highly familiar 
to the mice over weeks of training (21+/-14 sessions 
with familiar image set prior to imaging) (Fig. 1e; 
Extended Data Fig. 1c-e). The task consisted of briefly 
presented images with an interleaved gray screen 
(250 ms stimulus, 500 ms gray screen); mice were 
rewarded for licking in response to a change in image 
identity within 750 ms (Fig 1d). This paradigm is a 
‘roving standard’ change detection task in which the 
oddball stimulus on one trial becomes the standard 
for the next trial. Thus, each image can be either the 
standard or the oddball depending on the local 
context. Once mice were well-trained, they 
performed the task under the 2-photon microscope, 
first with the familiar image set, and subsequently 
with a novel natural scene image set they had not 
seen before (Fig. 1e; Extended Data Fig. 1b-e). 
Behavioral performance was consistent across 
familiar and novel image sessions (Fig. 1f, g; 

Extended Data Fig. 1f; Extended Data Fig. 2e,f), 
indicating mice had learned the task rules and 
generalized their change detection behavior to novel 
stimuli within a single session.  
 
A key aspect of our experimental design was to 
include and measure a rich set of stimulus, 
behavioral, and task-related features to evaluate 
how the three forms of novelty impact not only 
sensory coding but also behavioral and task coding. 
In the sensory domain, we assessed neural activity 
associated with the repeated stimuli (standards), 
unexpected changes in stimulus identity (oddballs), 
and unexpected stimulus omissions (5% of non-
change stimulus presentations were omitted during 
imaging sessions; Fig. 1d). For behavioral features, 
we monitored the animals’ running speed, pupil 
diameter, and licking behavior. Task-related 
information included tracking hits and misses, and 
the delivery of water rewards (Fig. 1h). Finally, to 
assess how exposure to stimulus novelty impacts 
single cell coding dynamics across multiple days, we 
tracked individual neurons across multiple 
experimental sessions using familiar and novel 
images: one session with familiar images, the first 
day of exposure to novelty, and a subsequent session 
of re-exposure to the same novel image set, referred 
to as the novel+ session (Fig. 1e; Extended Data Fig. 
2a-d, Extended Data Fig. 3). 
 
While our study focuses on the impact of novelty on 
neural representations using these three session 
types, our publicly available dataset includes 
longitudinal tracking of neurons in up to ten 2-
photon imaging sessions, comprised of both active 
behavior and passive viewing (Extended Data Fig. 2a, 
d), as well as the complete behavioral training and 
imaging history for all mice. The full imaging dataset 
includes 326 unique fields of view from 107 mice 
(50,482 total neurons imaged; 45,780 excitatory 
cells, 1,332 Sst cells, 3,370 Vip cells). The full 
behavior training dataset includes 4,787 sessions. 
 
Stimulus novelty differentially impacts 
excitatory, Vip, and Sst cell populations 
 
We first sought to determine whether stimulus 
novelty modulated the strength of sensory 
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responses in each of the three cell classes. To do this 
we computed average stimulus-triggered population 
responses separately in sessions with familiar versus 
novel images. Responses were quantified as the 
averaged magnitude of events detected from 

changes in calcium fluorescence (see Methods). 
Excitatory cells had larger image-evoked responses 
during the novel session compared to the familiar 
session (Fig 2b,c; Extended Data Fig. 4a), for both 
expected, repeated images (Fig. 2e) and for 
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unexpected image changes (Fig. 2f). Consistent with 
a role for the Vip-Sst disinhibitory circuit in 
facilitating enhanced excitatory activity with novelty, 
Sst neurons displayed much reduced levels of 
stimulus-driven activity during the novel session 
compared to the familiar session, for both changes 
and repeated pre-change images, while Vip cells 
showed the opposite pattern and were strongly 
activated by change and pre-change images in the 
novel, but not the familiar, session (Fig. 2b,c,e,f; 
Extended Data Fig. 4).  
 
With repeated experience, novel stimuli become 
familiar. We measured this familiarization process by 
recording activity in subsequent experimental 
sessions in which the novel image set was presented 
again to the mice during task performance. These 
sessions were acquired 1-3 days (2.1+/-0.9 sessions) 
after the initial novel session; we refer to this 
subsequent re-exposure with novel stimuli as the 
‘novel+’ session (Extended Data Fig. 2a, b, c). 
Strikingly, in the Vip and Sst populations, the 
magnitude of image-evoked responses in the novel+ 
returned to the baseline level measured in the 
familiar session (Fig. 2b-d; Extended Data Fig. 4), 
despite having an order of magnitude less 
experience with the novel stimuli. Indeed, the 
response magnitude in the novel+ session was not 
statistically different from responses in the familiar 
session (Fig. 2e,f). Image responses in the excitatory 
population were substantially lower in the novel+ 
compared to novel session (Fig. 2e,f), but did not 
fully return to the familiar level. These results show 
that VIP mediated disinhibition is specific to the first 
session with novel images, and demonstrate a rapid 
timescale of stimulus familiarization in inhibitory 
populations, on the order of hours to days.  
 
To test whether these changes in activity modified 
the sensory information that could be read-out from 
simultaneously measured population activity, we 
performed several decoding analyses. First, we 
found that population decoding of image identity 
was enhanced in novel sessions in excitatory and Vip 
cells (Extended Data Fig. 5a), indicating that novelty 
increases population selectivity for images in these 
two cell classes. Second, we found that we were able 
to decode changes from repeated stimulus 

presentations with higher accuracy from both the 
Vip and excitatory population during the novel 
compared to familiar sessions (Fig. 2g; Extended 
Data Fig. 5b), suggesting that novelty enhances the 
population response to unexpected image changes 
in these two cell classes. Interestingly, novelty-
induced enhancements in decoding of image identity 
and image change were also reversed in the novel+ 
session in excitatory and Vip populations (Fig. 2g; 
Extended Data Fig. 5b). Novelty did not have a 
significant effect on image identity and image 
change decoding from Sst population activity. 
 
We previously found that Vip neurons display 
ramping activity dynamics during the inter-stimulus 
interval in sessions with familiar stimuli, and 
continue to ramp up when images are unexpectedly 
omitted from a sequence of repeated images 
(Garrett et al., 2020). Consistent with prior results, 
this ramping activity in Vip neurons is present in 
familiar sessions but absent (or much reduced) in the 
first novel session (Fig. 2i,j). Remarkably, on 
subsequent exposure to the novel image set 
(novel+), ramping activity during stimulus omission 
re-emerged in the Vip population (Fig.  2k), 
representing a rapid experience-dependent change 
in neural coding and dynamics. Omission signals 
were more readily decoded from population activity 
during familiar and novel+ sessions than in the first 
novel session for Vip cells. There was no significant 
difference in omission decoding in excitatory or Sst 
cells (Fig. 2m; Extended Data Fig. 6a), despite the 
presence of some omission related activity in familiar 
sessions for the excitatory population (Fig 2i).  
 
Given that Vip omission-related activity was stronger 
during sessions with familiar images, we wondered 
whether the omission signal predicts upcoming 
familiar image identity. However, it was not possible 
to decode image identity from population activity 
during omissions (Fig. 2n; Extended Data Fig 6b). We 
also compared omission-related activity during 
change detection behavior with familiar stimuli to 
passive viewing sessions with the same stimuli 
played in open loop and found that omission signals 
persisted, indicating that omission signals in Vip cells 
are related to stimulus familiarity independent of 
task engagement (Extended Data Fig. 7a,b).  
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Mice adjusted their running and licking behavior 
according to the stimulus presentation cadence, 
typically slowing just before a stimulus was 
presented, and licking shortly after, particularly 
following image changes (Extended Data Fig. 8a-d). 
Mice did not alter their average running and licking 
behavior following image omissions, indicating that 
they did not treat the image omission as a change 
stimulus. However, mice were more likely to slow 
down and lick after the first stimulus presentation 
following the omission (Extended Data Fig. 8a-d). 
This pattern of behavior was consistent across 
familiar and novel sessions, demonstrating that 
behavioral differences do not account for the 
dramatic effects of novelty on neural activity 
(Extended Data Fig. 8a-d). Pupil size also fluctuated 
in concert with stimulus presentations, but the 
magnitude and dynamics of pupil width were not 
significantly different between familiar and novel 
sessions (Extended Data Fig. 8e,f). This is further 
evidence that the changes in neural activity with 
novelty (Figure 2) were not due to changes in 
behavioral state or arousal.  
 
Because image contrast and sensory tuning can 
affect neural response magnitudes and dynamics 
similarly to stimulus novelty (Millman et al., 2020; 
Rust and Cohen, 2022), we confirmed that the results 
described above were truly due to the novelty of the 
stimulus and not the particular image set that was 
selected to be familiar or novel by training one group 
of mice with the opposite image set compared to the 
rest of the mice. In this cohort, image set B (the novel 
set for most mice in the study) was used for training 
and became highly familiar, while image set A (the 
familiar set for the majority of mice) was used as the 
novel image set. These results were consistent with 
novelty as the primary driver of neural activityl 
differences at the population level, rather than the 
image sets themselves (Extended Data Figure 7c-e).   
 
Novelty alters multiplexed coding of sensory, 
behavioral, and task information  
 
We next addressed the question of whether stimulus 
novelty impacts coding for behavioral and task 
information. We used a linear regression model with 
time-dependent kernels to describe each cell’s 

activity trace as a linear combination of responses to 
sensory, behavioral, and task features  (Engelhard et 
al., 2019; Musall et al., 2019; Pillow et al., 2008; 
Steinmetz et al., 2019). Features used in the model 
included image presentations, image omissions, hit 
and miss task events (i.e., image changes with and 
without licking responses and rewards), and 
behavioral measures including licking, running 
speed, and pupil diameter (Fig. 3a). The kernel 
weights for each cell describe the linear influence of 
each feature on neural activity, separated from other 
ongoing task events. Model performance was 
correlated with each cell’s activity trace signal-to-
noise ratio, indicating that cells with highly dynamic 
activity were well fit by the model (Extended Data 
Fig. 9c).  
 
We computed the unique contribution of each 
feature to overall model performance by comparing 
the performance of the full model with reduced 
models fit without each feature or group of features 
(Fig. 3a). We refer to this fractional reduction in 
variance explained as the “coding score”. As an 
illustrative example, we show the coding score and 
kernels for stimulus omissions for all cells in familiar 
sessions in Fig. 3b (left). Cells with non-zero coding 
scores have larger amplitude kernels. Averaging the 
omission kernels for all cells within each cell class 
(Vip, Sst, excitatory) revealed that our model 
captured the expected time course of ramping 
dynamics in Vip cells during familiar (Fig. 3b, right), 
novel (Fig 3c, left), and novel+ image sessions (Fig. 
3c, right).  Kernels and coding scores for all cells are 
shown in Extended Data Figs. 10-12. 
 
We grouped features into four major model 
categories: images, omissions, behavioral, and task 
information (Fig. 3a) and examined how the different 
cell classes coded for these feature categories (Fig. 
3d; see Extended Data Fig. 8d,e for all ungrouped 
features). We found that activity of excitatory and 
Sst cells was best explained by images, whereas Vip 
cell activity was best explained by a combination of 
images, omissions, and behavioral features (Fig. 3d). 
Task coding was relatively low on average across all 
cell classes but was higher for Sst and excitatory cells 
compared to Vip cells (Fig. 3d).  
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We then split the data according to experience level 
(familiar, novel, novel+) and evaluated how the 
average coding score for each feature category was 
influenced by stimulus novelty (Fig. 3e). These 
results were calculated for the full population of 
recorded cells (colored disconnected points in Fig. 
3e) and for the subset of cells that were tracked 
across all 3 experience levels (gray lines in Fig. 3e). 
Consistent with changes to image-evoked activity 
with novelty (Fig. 2), excitatory and Vip populations 
increased the strength of image coding during the 
first novel image session, while image coding scores 
decreased in Sst cells. Omission coding by Vip cells 
was reduced by novelty and re-emerged in the 
subsequent novel+ session, consistent with model-
free measures of activity (Fig. 2). The Sst population 
had a small but significant reduction in omission 
coding with novelty.  
 
Vip cells showed the strongest encoding of 
behavioral information, which was selectively 
increased in the novel session (Fig. 3e). There was a 
small but significant increase in behavioral coding in 
the novel+ session for excitatory cells, suggesting 
that alterations in behavioral coding by excitatory 
neurons occurs over a slower timescale than in Vip 
cells. The Sst population showed a similar trend. 
Finally, task encoding also transiently increased 
during the first novel image session in Vip and 
excitatory populations, whereas Sst task coding 
scores transiently decreased. Task coding in all cell 
classes returned to the familiar level after the first 
session of exposure to novel images, indicating a 
relatively fast timescale mechanism for enhancing 
task-related signals with novelty. These results were 
consistently observed when using ungrouped model 
features (Extended Data Fig. 12a) or using stricter 
cell selection criteria (Extended Data Fig. 12b,c). 
 
We further split our data by cortical area and cortical 
depth (Extended Data Fig. 14). In excitatory cells, we 
see stronger image coding in VISp and stronger 
coding for omissions, behavioral, and task variables 
in VISl in all sessions, demonstrating area specific 
coding independent of experience level. In contrast, 
area differences in coding across the Vip population 
were experience-dependent; omission and task 
coding were stronger in VISl during familiar sessions, 

while image coding was stronger in VISl in the novel+ 
session. This suggests a transition from expectation 
and task signaling to more sensory based coding with 
novelty in Vip cells. In the Sst population, behavioral 
coding was consistently higher in VISl across all 
experience levels, similar to excitatory cells. Sst 
omission coding was increased in VISp in the familiar 
session. Coding for all feature categories was 
enhanced in deeper layers across the excitatory 
population. No major differences by cortical depth 
were observed for Vip or Sst cells.   
 
Together, these results demonstrate that stimulus 
novelty not only alters stimulus and omission 
encoding but also modifies coding for other 
behavioral and task features. In the case of image 
and task features, the average changes in the coding 
scores of Vip and excitatory cells were modified in 
the same direction, whereas the Sst population 
changed in the opposite direction—this is consistent 
with the Vip-Sst disinhibitory circuit. These effects 
were present across cortical depths, indicating that 
novelty shapes coding across the column of cortical 
circuitry. However, these results are based on 
population averages and may obscure meaningful 
heterogeneity in experience dependent coding 
changes in individual neurons, as can be observed in 
Fig. 3b and Extended Data Figs. 10-12. Therefore, we 
next sought to determine diversity in the pattern of 
changes in coding with novelty at the level of 
individual neurons.  
 
Coding diversity within cell classes  
 
To investigate single cell diversity in terms of the 
strength and type of information encoded across 
familiar and novel sessions, we focused on the 
subset of cells matched in all 3 sessions (Fig. 4a; 
Extended Data Fig. 3; 3306 excitatory cells, 200 Sst 
cells, 415 Vip cells). We characterized each cell’s 
multi-session pattern of encoding as a 12-element 
vector composed of the coding score for each 
feature category (images, omissions, behavioral, and 
task) across the three experience levels (familiar, 
novel, novel+), normalized to the maximum 
explained variance across sessions for that cell 
(Figure 4a). The matrix of neurons by feature coding 
across sessions (Fig. 4b) was used as the input to an 
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unsupervised clustering analysis (see Methods; 
Extended Data Fig. 15), performed separately on 
each cell class. We identified 10 excitatory clusters, 5 
Sst clusters, and 10 Vip clusters (Fig 4b-d, f; Extended 
Data Fig. 15c). This workflow identified 
subpopulations of neurons with similar changes in 
feature coding with experience and demonstrated 
significant heterogeneity in response types within 

and across cell classes (Fig. 4b-d, average coding for 
each cluster in Extended Data Fig. 16). Importantly, 
neurons belonging to these clusters were identified 
across multiple mice (Extended Data Fig. 15f) and 
multiple clusters were identified in each mouse 
(Extended Data Fig. 15e), demonstrating that 
functional diversity is not due to differences in the 
behavior of individual animals or related factors. 
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The patterns of dynamic multi-day encoding shown 
by individual clusters were diverse and often 
different from the average patterns for a given cell 
subclass (mean coding for excitatory, Sst, and Vip 
shown in top rows of Fig. 4b, c & d).  
 
The largest excitatory cluster (cluster 1, 22.1% of 
excitatory neurons) did not encode any features in 
any session. Most other clusters within the 
excitatory population primarily encoded images, and 
differed in the strength of encoding across familiar, 
novel, and novel+ experience levels (Fig. 4c). The 
second largest excitatory cluster (cluster 2, 18.6% of 
excitatory cells) showed strong image encoding that 
was specific to the first novel session. Excitatory 
cluster 3 (12% of excitatory cells) encoded images in 
both the first novel and subsequent novel+ sessions, 
indicating selectivity for the novel image set 
independent of experience level. Excitatory cluster 5 
(9.6% of excitatory cells) encoded familiar images. 
The prevalence of novelty specific encoding (cluster 
2) compared to image set specific encoding (clusters 
3 & 5) highlights the substantial influence of stimulus 
novelty on sensory representations in the visual 
cortex. We also found several smaller clusters with 
multiplexed coding for images and behavioral 
(cluster 10, 3.2% of excitatory cells) or task features 
(cluster 6, 8.1% of excitatory cells, cluster 9, 5.3% of 
excitatory cells). These clusters had unique activity 
dynamics compared to image specific clusters 
(Extended Data Fig. 16a). 
 
We identified fewer clusters in the Sst population 
compared to excitatory cells, which is consistent 
with lower variance of coding scores in the Sst 
population overall (Fig. 4e). Sst clusters also primarily 
encoded images, with differing strength of coding for 
familiar or novel stimuli. The largest Sst cluster 
(cluster 1, 33% of Sst cells) coded only for familiar 
images, while the second largest (cluster 2, 28.5% of 
Sst cells) showed image coding for both familiar and 
novel+ sessions. A third Sst cluster (cluster 3, 19.5% 
of Sst cells) coded for images specifically in the 
novel+ sessions. Together these three clusters can 
account for the average coding across the Sst 
population, but we also identified a cluster with the 
opposite pattern as the average, showing enhanced 

image coding during the first novel session (cluster 4, 
16% of Sst cells).  
 
Vip cells showed the most diversity (Fig. 4d). The 
largest Vip cluster (cluster 1, 22.4% of Vip cells) 
selectively coded for images during the first novel 
session. The second largest Vip cluster (cluster 2, 
15.4%) was a non-coding cluster, like excitatory 
cluster 1. Other Vip cell clusters showed multiplexed 
coding of several features. Some clusters had weak 
image coding during the novel session, combined 
with omission coding during either the familiar or 
novel+ sessions (Vip cluster 3, 13.3% and cluster 4, 
10.8%). Others showed joint coding of both images 
and omissions in the same session (Vip cluster 6, 
8.7%, and cluster 8, 6%). One cluster had robust 
omission coding during familiar sessions which 
switched to robust image coding with novelty (Vip 
cluster 7, 6.5%), mirroring the population average. 
Finally, several Vip clusters were defined by their 
dynamic behavioral encoding across novelty 
conditions (Vip clusters 5, 9.4%, cluster 9, 4.8%, and 
cluster 10, 2.7%).  
 
To evaluate whether specific functional patterns are 
biased to specific cortical areas or depths, we 
quantified for each cluster the distribution of cells 
across the visual areas VISp and VISl and across 
superficial (upper) versus deep (lower) cortical 
depths (upper defined as <250um from cortical 
surface, lower defined as >250um). None of the Sst 
and Vip clusters were significantly biased for depth 
or area (Extended Data Fig. 16), however these cell 
classes may still have layer specific effects due to 
their differential distribution across cortical depth 
(Tremblay et al., 2016). In contrast, nearly all the 
excitatory clusters were significantly biased either 
for cortical depth or area (Fig. 4g; Extended Data Fig. 
16). Interestingly, the novelty encoding cluster 
(excitatory cluster 2) was biased to superficial depths 
of VISp, while the familiar image selective cluster was 
biased to lower depths, particularly in VISl 
(excitatory cluster 5).  
 
It is important to note that these clusters are not of 
equal size (Fig. 4f). Some patterns of coding changes 
are overrepresented compared to others, suggesting 
they are not simply due to random drift in activity. 
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For instance, excitatory clusters 1 (22.1%) and 2 
(18.6%) are ~4x larger than clusters 8 (5.4%) and 9 
(5.3%), and ~2x larger than clusters 4 (9.6%) & 5 
(9.6%) (Figure 4f). We further quantified the bias in 
cluster size with a shuffle analysis to compare the 
sizes of clusters in our data to a control condition 
where the identity of neurons was shuffled across 
experience levels, breaking any relationships in 
experience dependent coding in individual cells, 
while maintaining the overall distribution of coding 
scores within each experience level (Extended Data 
Fig. 17a,e). This demonstrated some clusters were 
significantly larger than expected by chance, 
whereas others were at chance level or even under-
represented. Notably, novelty-enhanced excitatory 
and Vip clusters were significantly larger than 
expected by chance (excitatory clusters 2 & 3, 
Extended Data Fig. 17c; Vip cluster 1, Extended Data 
Fig. 17d). In contrast, novelty-suppressed clusters 
were larger than chance among Sst cells (Sst clusters 
1 & 2, Extended Data Fig. 17b). These results indicate 
that specific patterns of changes in coding with 
novelty are selectively enriched or minimized within 
cell subclasses of the visual cortex. 
 
As a further demonstration of the importance of 
novelty in defining functional clusters, we performed 
clustering on coding patterns measured in 3 
repeated sessions with the same familiar stimulus 
(Extended Data Fig. 18). This procedure yielded 
fewer clusters for excitatory and Vip cells (6 
excitatory clusters, 7 Vip clusters) and the largest 
clusters (i.e. the majority of neurons) showed more 
consistent patterns of coding across days (excitatory 
clusters 1 & 2, 69.6% of cells; Sst clusters 1& 2, 86.6% 
of cells; Vip clusters 1 & 2, 54.4% of cells), rather than 
dynamic patterns of changes as observed when 
clustering included novelty.  
 
Ultimately, we were able to identify specific clusters 
of Vip, Sst, and excitatory cells that showed novelty-
induced changes in image coding that were 
consistent with a potential disinhibitory relationship 
(Fig 4h). However, these clusters only represent a 
subset of the total population in each cell class. Thus, 
the heterogenous functional clusters we identified 
suggest a diverse set of distinct circuit motifs are 
engaged during novelty processing.  

Discussion 
 
Using the Allen Brain Observatory experimental 
pipeline, we performed longitudinal imaging of 
nearly 15,000 excitatory and inhibitory cortical cells 
in mice performing a visually guided behavioral task. 
Our study represents the first exploration of this rich 
open dataset that can be further modeled and mined 
for future discovery. We found that novelty altered 
responses to expected and unexpected sensory 
stimuli, stimulus omissions, and coding for 
behavioral and task information by Vip, Sst, and 
excitatory neurons in the mouse visual cortex. When 
we evaluated the pattern of changes in coding of 
individual neurons, we found that the average 
effects we observed were the product of multiple 
clusters of neurons with diverse functional 
properties, including differences in the direction and 
timescale of novelty effects. Vip neurons were the 
most diverse across feature encoding and novelty 
modulation, consistent with a highly plastic 
population of cells that signal salience in an 
experience-dependent manner.  
 
A role for disinhibition in novelty processing  
 
A recent modeling study (Schulz et al., 2021) 
demonstrated that suppression of a subpopulation 
of inhibitory cells can generate novelty responses in 
excitatory cells. We found that stimulus-evoked 
responses in Vip neurons are dramatically enhanced 
by stimulus novelty, while Sst responses are reduced, 
and excitatory responses increased, supporting the 
hypothesis that Vip neurons are the source of 
disinhibition as in Schulz et al.’s model.  
 
Vip-mediated disinhibition has been shown to 
enhance perception, learning, and memory (Fu et al., 
2014; Krabbe et al., 2019; Letzkus et al., 2015, 2011; 
Melzer et al., 2021; Park et al., 2021; Turi et al., 2019; 
Zhang et al., 2014)  in similar ways to stimulus 
novelty (Park et al., 2021; Quent et al., 2021; 
Reichardt et al., 2020; Schomaker and Meeter, 
2015). Vip-mediated disinhibition also plays a role in 
contextual modulation of visual responses and has 
been suggested to enhance sensitivity to weak but 
salient inputs (Garcia del Molino et al., 2017; Hertäg 
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and Sprekeler, 2019; Keller et al., 2020; Millman et 
al., 2020). Novelty induced disinhibition may 
function in a similar manner, by increasing the gain 
of excitatory responses for novel stimuli that, while 
salient, lack the strong recurrent connectivity that 
develops with learning. Novelty-induced 

disinhibition could then trigger the formation of new 
stimulus specific networks by gating plasticity (Miehl 
and Gjorgjieva, 2022; Wilmes and Clopath, 2019, 
2019). In support of this idea, novelty can reorganize 
patterns of functional connectivity to enable 
plasticity and new learning (Park et al. 2021).  
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The mechanisms that enhance Vip neurons’ 
responses to novelty remain unknown, but are likely 
to involve neuromodulatory (Bunzeck and Thiel, 
2016; Ranganath and Rainer, 2003), top-down 
frontal (Zhang et al., 2014), and/or thalamic inputs 
(Williams and Holtmaat, 2019).  
 
Importantly, we found that stimulus novelty effects 
on inhibitory responses were specific to the first 
behavior session with novel images, as Vip and Sst 
population activity dynamics returned to familiar 
levels upon re-exposure to the same image set in the 
novel+ session. Familiarization-induced changes in 
excitatory activity after re-exposure were less 
pronounced. These results are consistent with the 
idea that rapid inhibitory plasticity is required to re-
establish stable network dynamics following 
disinhibition of excitatory populations, and to 
instruct longer term changes in excitatory circuits 
(Clopath et al., 2016, 2016; Miehl and Gjorgjieva, 
2022; Sprekeler, 2017; Zenke et al., 2017). The 
striking differences in activity between the first novel 
session and subsequent novel+ re-exposure also 
suggests that a period of offline consolidation, such 
as during sleep, could be in involved in the 
expression of the familiarization effect (Aton et al., 
2014; Montgomery et al., 2022). 
 
Absolute and contextual novelty are distinct 
phenomena (Bunzeck and Düzel, 2006; Bunzeck and 
Thiel, 2016; Ranganath and Rainer, 2003) that are 
rarely studied concurrently. Our experimental design 
included both contextual novelty, in the form of 
unexpected changes to repeated stimuli, and stimuli 
that were novel in an absolute sense, allowing 
examination of potential interactions between them. 
Stimulus novelty increased the strength of activity 
for both changes and repeated stimulus 
presentations in excitatory and Vip populations, 
suggestive of a global effect (Fig. 2e,f). However, we 
also found an increase in the ability to decode 
changes from non-changes in excitatory and Vip 
population activity during novel image sessions 
(Figure 2g), indicating that stimulus novelty may 
enhance some aspects of contextual novelty signals.  
 
Previous studies showed that Sst neurons are 
necessary for adaptation of excitatory responses to 

repeated stimuli in auditory cortex (Natan et al., 
2015) and contribute to deviance detection in visual 
cortex (Hamm and Yuste, 2016). In our study, Sst 
population activity remained elevated during 
repeated stimulus presentations (Fig. 2b-d), 
consistent with a role in providing stimulus specific 
inhibition to support adaptation in excitatory 
populations, particularly when stimuli are familiar.  
 
A third major subclass of inhibitory cells, 
parvalbumin-expressing interneurons (PV) which 
were not measured in this study, could also 
contribute to absolute and contextual novelty signals 
(Hayden et al., 2021; Kaplan et al., 2016).  
 
Vip omission signals are reduced by novelty  
 
Stimulus omissions are another form of contextual 
novelty in which expectation is violated, i.e., a 
predicted input does not occur (Braga and 
Schönwiesner, 2022). In sessions with familiar 
stimuli, we found that Vip activity showed ramping 
behavior during the inter-stimulus interval and 
continued to ramp up during unexpected omissions. 
Although this omission-related ramping was 
dramatically reduced during the first novel session 
(Fig. 2j), it rapidly re-emerged during subsequent 
exposure to the novel images (Fig. 2k), indicating 
that Vip omission ramping activity is experience-
dependent. Excitatory population activity also 
showed omission related signals in the familiar 
sessions, but not in the novel or novel+ sessions.   
 
Other studies have documented experience-
dependent omission responses in a population of 
excitatory neurons in the visual cortex during virtual 
navigation (Fiser et al., 2016). Ramping activity in the 
visual cortex has also been associated with reward 
anticipation (Chubykin et al., 2013; Poort et al., 2015; 
Shuler and Bear, 2006). Vip inter-stimulus ramping 
could relate to reward expectation during change 
detection behavior; however, we found that Vip 
omission ramping was not reward-dependent, as it 
also occurred in passive sessions with familiar stimuli 
(Extended Data Fig 7a,b). Contrast suppression is 
another possible explanation for omission related 
ramping activity, and Vip cells, as well as L2/3 
excitatory cells, are known to be suppressed by high 
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contrast stimuli (Millman et al., 2020). Whether 
suppressed by contrast responses in visual cortex are 
also experience dependent is an open question.  
 
In the frontal cortex, delay period activity of Vip 
neurons was found to support working memory and 
task performance (Kamigaki and Dan, 2017). Vip 
ramping in visual cortex could serve as a working 
memory signal to facilitate detection of image 
change for familiar stimuli. However, we found that 
Vip population activity during omissions did not carry 
information about stimulus identity (Fig. 2n), as 
would be expected for a working memory signal.  
 
Instead, ramping activity in Vip cells could represent 
more general information about task timing 
(Rabinovich et al., 2022), temporal expectation 
(Nobre et al., 2007), prediction error (Orlova et al., 
2021; Wacongne et al., 2011), salience (Itti and Koch, 
2001), stimulus contrast (Millman et al., 2020) or a 
combination of these (Braga and Schönwiesner, 
2022).  
 
Novelty influences behavioral and task coding 
in visual cortex 
 
Many studies have demonstrated coding for a 
variety of cognitive and behavioral signals in the 
mouse visual cortex (Dipoppa et al., 2018; Liu et al., 
2015; Minderer et al., 2019; Musall et al., 2019; 
Poort et al., 2015; Rabinovich et al., 2022; Saleem et 
al., 2013; Steinmetz et al., 2019; Stringer et al., 
2019), and these signals can be enhanced by learning 
and experience (Khan et al., 2018; Makino and 
Komiyama, 2015; Poort et al., 2015; Shuler and Bear, 
2006). We found that stimulus novelty can modify 
encoding of behavioral (running, licking, pupil 
diameter) and task (hit, miss) variables in visual 
cortical neurons, in addition to stimulus and 
omission related information (Figure 3). The 
coordinated increase in sensory, behavioral, and task 
coding may serve to link novel stimuli to behavioral 
state and trial outcomes. Indeed, Vip-mediated 
disinhibition gates plasticity (Krabbe et al., 2019; 
Letzkus et al., 2015; Williams and Holtmaat, 2019; 
Zhang et al., 2014) and plays a role in behavioral 
modulation in visual cortex (Kuchibhotla et al., 2017; 

Pakan et al., 2018). Our results demonstrate that 
novelty can regulate this process.  
 
Interestingly, the behavioral performance of our 66 
animals was consistent across familiar and novel 
stimuli (Figure 1f, g; Extended Data Fig. 2). It is 
possible that the ability of mice to generalize their 
behavior performance to novel stimuli is enabled by 
enhanced coding for stimulus, behavioral and task-
related information with novelty in Vip and 
Excitatory populations (Fig. 3e,f). One study found 
that novelty increased the cognitive flexibility of 
mice that were tasked with learning new behavioral 
contingencies (Park et al., 2021). Novelty can also 
increase attention and arousal (Schomaker and 
Meeter, 2015), driving a more robust encoding of 
novel stimuli into working memory (Mayer et al., 
2011). Importantly, our data show that the influence 
of novelty on behavioral and cognitive 
representations is not only the provenance of 
higher-order association areas, but occurs as early as 
the primary visual cortex.    
 
Functional diversity is revealed by novelty  
 
Our clustering analysis (Figure 4) revealed diverse 
subpopulations of cells with distinct novelty-
dependent patterns of coding. We identified 10 
unique Vip clusters, 10 excitatory clusters, and 5 Sst 
clusters. These clusters differed in the direction and 
timescale of novelty-induced changes. For example, 
different excitatory clusters encoded novel images in 
either a transient (specific to the first novel session; 
excitatory cluster 2) or persistent (present in both 
novel and novel+ re-exposure; excitatory cluster 3) 
way. We also found Sst clusters that were transiently 
suppressed by novelty (Sst cluster 2) or remained 
suppressed across multiple sessions with novel 
images (Sst cluster 1). These separate populations 
may serve distinct computational roles. For instance, 
transient changes in coding could be involved in 
gating plasticity at specific time points, whereas 
those cells with more persistent changes may have a 
role in maintaining stimulus representations.  
 
Vip inhibitory neurons were most diverse in their 
coding properties, both across features and with 
novelty. At the population level, Vip cells 
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dramatically altered their coding from omissions in 
familiar sessions to image coding in novel sessions. 
Clustering showed these changes largely resulted 
from the contributions separate clusters of Vip cells 
(Fig.4d, Extended Data Fig. 16). We also found that 
distinct Vip clusters differentially coded for 
behavioral features during familiar or novel sessions. 
A study in cingulate cortex also found a high degree 
of heterogeneity in Vip representations across 
behavioral contexts and time (Johnson et al., 2022), 
suggesting that functional flexibility may be a general 
property of Vip cells across the brain.  
 
Novelty enhancement was most prevalent in 
excitatory cells in superficial layers (excitatory 
cluster 2), while familiarity enhancement was 
observed in excitatory clusters that were biased to 
deeper layers (excitatory cluster 5). Novelty 
processing has been linked to predictive coding 
(Quent et al., 2021; Reichardt et al., 2020). Prediction 
error signals have been identified predominantly in 
layer 2/3 of visual cortex (Homann et al., 2022; Keller 
and Mrsic-Flogel, 2018; Muzzu and Saleem, 2021) 
while deeper layers have been associated with 
memory signals (Doron et al., 2019; Murayama et al., 
2009), consistent with our findings of novelty 
enhancement in superficial layers and familiarity 
coding in deeper layers. 
 
Representational drift (Aitken et al., 2022; Deitch et 
al., 2021; Marks and Goard, 2021; Rule et al., 2019; 
Schoonover et al., 2021) could also contribute to 
differences in coding across days. However, several 
control analyses comparing cluster sizes to shuffled 
conditions (Extended Data Fig. 17), as well as 
clustering on multiple familiar sessions (Extended 
Data Fig 18) demonstrate that novelty is a key driver 
of the functional diversity we observe. 
 
The functional clusters that we identified within each 
broader class may correspond to different 
transcriptomic cell types (Tasic et al., 2018; Yao et al., 
2021; Zeng, 2022; Zeng and Sanes, 2017). Future 
studies using methods such as in situ spatial 
transcriptomics performed on previously imaged 
cortical neurons can directly link the functional 
clusters we observe to more resolved transcriptomic 
cell types (Bugeon et al., 2022; Condylis et al., 2022; 

Moffitt et al., 2018). In addition, the functional 
clusters we identified may map onto diverse 
connectivity motifs beyond the Vip-Sst disinhibitory 
circuit (Campagnola et al., 2022; Cottam et al., 2013; 
Garcia-Junco-Clemente et al., 2019; Pfeffer et al., 
2013; Pi et al., 2013; Zhou et al., 2017). Mapping the 
cell type specific inputs to distinct transcriptomic 
populations and determining the connectivity 
between different functional clusters will be 
essential to elucidate the source and mechanism of 
novelty processing and functional diversity. 
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Materials and Methods 
 
Mice 
All experiments and procedures were performed in accordance with protocols approved by the Allen Institute Animal 
Care and Use Committee. Male and female transgenic mice expressing GCaMP6 in various Cre-defined cell populations 
were used in these experiments1. The three genotypes used in this study were Slc17a7: Slc17a7-IRES2-Cre;Camk2a-
tTA;Ai93(TITL-GCaMP6f), n=41; Sst: Sst-IRES-Cre;Ai148(TIT2L-GC6f-ICL-tTA2), n=19; Vip: Vip-IRES-Cre;Ai148(TIT2L-GC6f-
ICL-tTA2), n=22. Prior to surgery mice were singly-housed and maintained on a reverse 12-hour light cycle (off at 9am, 
on at 9pm); all experiments were performed during the dark cycle. 
 
Surgery 
All mice received a headpost and cranial window surgery as previously described2,3. Briefly, surgery was performed on 
healthy mice that ranged in age from 5-12 weeks. Mice were deeply anesthetized with isoflurane prior to removing skin 
and exposing the skull. A custom titanium headframe was cemented to the skull and a circular piece of skull 5 mm in 
diameter was removed, durotomy performed, and a glass coverslip stack was cemented in place. Mice were given 2 
weeks to recover from surgery before intrinsic signal imaging. 
 

Intrinsic Signal Imaging 

Intrinsic signal imaging (ISI) was used to measure the hemodynamic response of the cortex to visual stimulation across 
the entire field of view.  As previously described, ISI was used to delineate functionally defined visual area boundaries 
for targeting of 2P experiments3.   

Data Acquisition 
 Mice were lightly anesthetized before imaging sessions began with a vasculature image acquired under green 
light. Next the imaging plane was defocused and the hemodynamic response to a visual stimulus was imaged under red 
light. The stimulus consisted of an alternating checkerboard pattern (20º wide bar, 25º square size) moving across a 
mean luminance gray background. On each trial, the stimulus bar was swept across the four cardinal axes 10 times in 
each direction at a rate of 0.1 Hz 4. 

 

Data Processing 
 A minimum of three trials were averaged to produce altitude and azimuth phase maps, calculated from the 
discrete Fourier transform of each pixel. A “sign map” was produced from the phase maps by taking the sine of the angle 
between the altitude and azimuth map gradients. In the sign maps, each cortical visual area appears as a contiguous red 
or blue region5. 

 To provide a reliable map for subsequent targeting of 2-photon calcium imaging experiments, a consistent 
anatomical coordinate corresponding to the center of V1 (which maps to center of the retina) was used to realign the 
maps. A map of eccentricity from the V1 centroid was produced by shifting the origin of the map of visual eccentricity to 
the coordinates at the V1 centroid, thereby representing the retinotopic gradients relative to this point. A 
representation of the corresponding retinotopic location is present in nearly all higher visual areas (HVAs). Using these 
modified V1 and HVA targets for optical physiology experiments ensured that recorded neurons represent a consistent 
region on the retina, approximately at the center of the right visual hemifield. 
 
 
Behavior Training 
Water restriction and habituation 

Throughout training mice were water-restricted to motivate learning and performance of the behavioral task 6. 
Mice had access to water only during behavioral training sessions or when provided by a technician on non-training 
days. During the first week of water restriction mice were habituated to daily handling and increasing durations of head 
fixation in the behavior enclosure over a five-day period. The first day of behavior training began after 10 days of water 
restriction. Mice were trained 5 days per week (Monday-Friday) and were allowed to earn unlimited water during the 
daily 1-hour sessions; supplements were provided in a home cage water dish if the earned volume fell below 1.0mL 
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and/or body weight fell under 80-85% of initial baseline weight. On non-training days mice were weighed and received 
water provision to reach their target weight, but never less than 1.0 mL per day. 
 
Apparatus 
  Mice were trained in custom-designed, sound-attenuating behavior enclosures equipped with a 24” gamma-
corrected LCD monitor (ASUS, #PA248Q). Mice were head-fixed on a behavior stage with 6.5” running wheel tilted 
upwards by 10-15 degrees. The center of the visual monitor was placed 15 cm from the eye and visual stimuli were 
spherically warped to account for the variable distance from the eye toward the periphery of the monitor. Water 
rewards were delivered using a solenoid (NI Research, #161K011) to deliver a calibrated volume of fluid through a 
blunted, 17g hypodermic needle (Hamilton) positioned approximately 2-3 mm away from the animal’s mouth using a 
custom-made 3-axis motorized stage. 
 
Change detection task 
Overview: The change detection task and automated procedure for training this task have previously been described in 
detail7,8. Briefly, mice were trained using a behavioral program implementing a go/no-go change detection task 
schematized in Figure 1. Mice were presented with a continuous stream of flashed visual stimuli (250ms stimuli 
interleaved with 500ms gray screen) and were trained to lick a reward spout when the identity of the stimulus changed. 
If mice responded correctly within a short, post-change response window (150-750ms after stimulus change) a water 
reward was delivered. A ‘grace period’ of 3 seconds occurred after each change, during which no additional image 
changes could occur, thereby providing time for reward consumption before the next trial was initiated. At the start of 
each trial, trial type was determined (87.5% “GO” or 12.5 % “CATCH”) and a change time was drawn from a geometric 
distribution ranging from 4 to 12 flashes (3 to 9 seconds). If the mouse licked prior to the stimulus change the trial was 
reset (“aborted”) up to 5 times before a new trial and change time was re-drawn. Thus, continuous licking would result 
in no opportunity to obtain reward. No other punishment was delivered for false alarms or aberrant licking.  
 
Automated Training: Mice were trained using an automated training procedure that consisted of 4 stages of increasing 
complexity. On Day 1 of the automated training protocol mice received a short, 15-min “open loop” session during 
which non-contingent water rewards were delivered coincident with 90° changes in orientation of a full-field, static 
square-wave grating (Stage 0). This session was intended to 1) introduce the mouse to the fluid delivery system and, 2) 
provide the technician an opportunity to identify the optimal lick spout position for each mouse. Each session thereafter 
was run in “closed loop”, and progressed through 3 phases of the operant task: Stage 1: static, full-field square wave 
gratings (oriented at 0° and 90°, with the black/white transition always centered on the screen and the phase chosen 
randomly on every trial), Stage 2: flashed, full-field square-wave gratings (0° and 90°, with phase as described in 1), and 
Stage 3: flashed full-field natural scenes (8 “Familiar” natural images shown in Figure 1). In a subset of mice the image 
sets labeled “Familiar” and “Novel” were switched in order to balance the experimental design. 
 
Progression through training stages: Starting with Stage 1, the advancement criteria required mice to achieve a session 
maximum performance of at least d-prime=2 (calculated over a rolling 100 trial window without trial count correction) 
during two of the last 3 sessions. The fastest progression from Stage 1 to Stage 3 was 4 training days.  Once mice 
exhibited consistent performance (d-prime >/= 1 over 3 consecutive sessions) they became eligible to transition to the 2-
photon calcium imaging stage of the experiment.  
 
 
2-photon Calcium Imaging 
Calcium imaging data was acquired using two microscope platforms, each of which was built around our custom-
designed Allen Brain Observatory behavior platform and common mouse-to-screen geometry as previously 
described3,9,10. 
 
Single Plane Imaging Apparatus 

Single-plane calcium imaging was performed using a 2-photon microscope (Scientifica Vivoscope), as used by de 
Vries et al., 2020 and Garrett et al., 2019. Scientifica microscope design is based on 8 kHz resonant scanning mirror and 
employs conventional hardware (photomultiplier tubes, Hamamatsu; transimpedance amplifier, Femto; DAQ hardware, 
National Instruments; 16x imaging objective, Nikon) to collect emitted fluorescence and form an image on the 
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acquisition computer. The microscope is controlled by the company's proprietary LABView software SciScan. Laser 
excitation was provided by a Ti:Sapphire laser (Chameleon Vision, Coherent) at 910 nm. Pulse dispersion compensation 
was set at ~10,000 fs2. Movies were recorded at 30Hz using resonant scanners over a 400 µm field of view.   
 
Multi-Plane Imaging Apparatus 

Multi-plane calcium imaging was performed using a Dual-Beam Mesoscope (Multiscope) that allowed us to 
double imaging throughput11. The second laser beam was introduced to the original 2P-RAM system12, packaged into a 
compact opto-mechanical add-on unit, and optimized for ease of alignment. The dual-beam modification consisted of a 
1) delay line used to split the original laser beam into 2 and delay one of the beams by half a period of the excitation 
laser; 2) a secondary z-scanner and 3) custom-built demultiplexing unit. The delay line allowed for temporal encoding of 
the excitation beam and further demultiplexing of the detected fluorescence based on the arrival time at the 
photodetector. A secondary z-scanner allowed us to send two beams to the two focal planes located along Z axis. Laser 
excitation was provided by a Ti:Sapphire ultrafast laser (Chameleon Ultra II, Coherent). Pulse dispersion compensation 
was optimized for GCaMP6 using a custom-built external pulse compensation module based on a single-prism four-path 
design (Sofroniew et al., 2016; Akturk, et al., 2006). The Multiscope was controlled with customized ScanImage software 
(VidrioTech) as well as an in-house developed Workflow Sequencing Engine. Like conventional 2-photon microscopes, 
the emitted fluorescence was detected using a single photomultiplier tube, and a custom analog demultiplexing circuit 
was used to separate fluorescence from two planes11. This was achieved by multiplying the PMT signal with two 
complimentary square waveforms, where each waveform corresponded to the temporal window during which 
fluorescence received by the PMT consisted of the signal from one of the focal planes. The duration of the integration 
window was 6.25 ns (half a period of the excitation laser's pulse train), which is not enough to fully capture the decay of 
fluorescence, which resulted in the tail of fluorescence leaking to the opposite integration window and causing inter-
plane crosstalk (~10% remaining crosstalk on average). We used an ICA-based demixing algorithm to further clean up 
the data acquired in simultaneously imaged focal planes. National Instruments data acquisition hardware (PXI chassis, 
PXIe6363 DAQ boards) was used to control the microscope, form, and record the image. 
 
Data Acquisition 

Daily preparations for the 2-photon imaging experiments were conducted under ambient red light to maintain 
the reversed day-night cycle, and imaging itself was performed in the dark. Mice were head-fixed in a behavior stage 
identical to that used during behavior training. A water immersion objective was used for single-plane experiments on 
the Scientifica microscope whereas a water-based ultrasonic gel was used as immersion medium for the multi-plane 
experiments on the Multiscope. Two-photon movies (512x512 pixels, 31 Hz for single plane and 512x512 pixels, 11 Hz 
for each plane in multi-plane experiments), eye tracking (30 Hz), and behavior (30 Hz) were recorded and continuously 
monitored. Recording sessions were ~1 hour long, but could be interrupted if any of the following was observed: 1) 
mouse stress as shown by excessive secretion around the eye, nose bulge, and/or abnormal posture; 2) excessive pixel 
saturation (>1000 pixels) as reported in a continuously updated histogram; 3) loss of baseline intensity caused by 
bleaching and/or loss of immersion water in excess of 20%; 4) hardware failures causing a loss of data integrity.  At the 
end of each experimental session, a z-stack of images (+/- 30 µm around imaging site, 0.75 µm step) was collected to 
evaluate cortical anatomy as well as z-motion during acquisition. In addition, a full-depth cortical z stack (~800 µm total 
depth, 5 µm step) was collected to document the imaging site location.   
 
Quality Control 

Each experimental session was analyzed for data integrity based on a broad range of operational parameters. A 
comprehensive report was automatically generated to track data trends, animal behavior, experimental failures and 
errors. To minimize bias, QC reports were reviewed by rig operators other than the operator who performed the 
session.  
Assessment of the following quality metrics was performed after each imaging session. Failure to meet any of these 
criteria resulted in the session being retaken on a subsequent day.  

1. Image Saturation: Initial movie frames were assessed to confirm that photonic saturation did not exceed 1000 
pixels and the full dynamic range of the recording system was adequately covered.  

2. Photobleaching: Epochs of fluorescence at the beginning and end of a session were compared to ensure that 
baseline fluorescence did not drop greater than 20%.  
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3. Field of View Targeting Validation: Targeted imaging locations were checked against the intrinsic signal imaging 
data, using a registered coordinate system, to confirm that data was collected from the correct visual area.   

4. Z-Axis Stability: Stability of image recording was assessed by comparing a windowed average image from the 
first and last 5 minutes of the experiment to a z-stack of images (+/- 30 μm around imaging site, 0.75 μm step) 
collected at the end of each experimental session to calculate the amount of drift that occurred over the 
session. Experiments with z-drift above 10μm over the course of the entire session were excluded.  

5. Animal Stress: Behavior videos were viewed to confirm that animals did not show excessive signs of stress. Any 
animal that showed eye secretion covering the pupil or excessive orbital tightening was returned to its home 
cage to recover. The presence of nose bulge, flailing and abnormal postures was also monitored.  

6. Task Performance: Behavior performance in the change detection task was confirmed to have met (or exceed) a 
peak d-prime of 1.0. 

7. Temporal Sync: Temporal alignment of data streams was confirmed. 
8. Hardware/Software Failure: Multiple datastreams and metrics were assessed to ensure that incoming data 

integrity was not compromised by hardware and/or software related errors 
9. Excessive Motion: Imaging frames were checked for residual motion (after motion correction algorithms had 

been applied) 
10. Interictal Events: Presence of interictal events was assessed by measuring the full field fluorescence and 

calculating the intensity spike prominence and width for the first 10,000 frames of the 2P movie.  Experiments 
with a non-zero probability of interictal events were then checked manually in order to exclude any potentially 
epileptic mice13 (see Steinmetz et al., 2017). 

 
A final, container-level QC assessment was performed once all data collection for a mouse was completed.  This 
secondary assessment included assessing the following metrics: 

1. Full Container Status: Containers (the set of imaging sessions for a given field of view) were confirmed to contain 
all required datasets. 

2. Brain Health:  2-photon serial tomography sections were examined to assess general brain health.  Health 
assessment includes checking for excessive bruising, brain abnormalities, deformities, necrotic tissue damage, 
and checking for any signs of laser damage. 

3. Cell Matching:  Imaging fields of view were checked across all experiments in a container to confirm successful 
targeting of the same field of view. This assessment was made visually, based on similarity in patterns of 
vasculature and the presence of clearly identifiable matched cells across sessions. 

 
2-photon Data Processing   
An overview of the data processing steps for both single- and multi-plane imaging is shown below. 
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Dewarping 
To account for variation in scanning rate across each line in the 2p-imaging frame, due to the non-constant speed of the 
resonant scanner, data acquired with the Scientifica microscopes required a dewarping step (Multiscope instruments 
have built-in dewarping correction). 

Correcting for the warping in the image involves taking a subset of the warped image’s columns, towards the edges of 
the image where the scanning speed is lower, and combining them using parameters derived from calibration data 
acquired with a standard grid image. To determine correct dewarping parameters, the grid image is adjusted until the 
dewarped grid is uniform. Each side of the image is dewarped independently. 

The following equations are used to determine which columns are chosen from the warped image and how they are 
combined. The jth column of the dewarped image will be given by the formula: 

𝑐𝑜𝑙[𝑗] = (1 + ⌊𝑔[𝑗 − 1]⌋ − 𝑔[𝑗 − 1]) ∗ 𝑖𝑛𝑝𝑢𝑡_𝑖𝑚𝑎𝑔𝑒[⌊𝑔[𝑗 − 1]⌋] +	(𝑔[𝑗] 	−	 ⌊𝑔[𝑗]⌋) 	∗ 	𝑖𝑛𝑝𝑢𝑡_𝑖𝑚𝑎𝑔𝑒[⌊𝑔[𝑗]⌋]), 

where 

𝑓(𝑥) = 𝑥 − int =𝑏 ?1 − sin ?C
𝑥
3𝑎

+
1.0
6.0H

πJJ + 0.5L ,			𝑥 ∈ [0, 𝑎] 

𝑔(𝑥) = (𝑥 + 0.5) − O𝑏 ?1 − sinPC
𝑥 + 0.5
3𝑎

+
1.0
6.0H

πQJR ,			𝑥 ∈ [0, 𝑎] 

Notice that this is taking a linear combination of the two (generally, adjacent) columns of the original image, 
using the decimal parts of the g function as coefficients. If these ever end up being non-adjacent columns from the 
original image, then we also add the value of the skipped column to col[j]. 
In the event that both f[j] and g[j - 1] are not nonnegative, then we fill that column with the average from the original 
image. And if f is nonnegative but g is not, then we simply replace that column with the exact same column from the 
original image. 

For each experiment, there are four parameters that tell us how much the image has been warped. These are 
called aL, aR, bL, and bR. The L and R refer to the side of the image which is being dewarped. In the equations above, a 
and b are replaced with their corresponding parameter, depending on whether you are dewarping the left side or the 
right side. The parameters aL and aR specify how far (in pixels) into the image the warping occurs. The parameters bL 
and bR are more a measure of how warped the image is in those areas.  

Motion Correction 
We used Suite2P v0.9.3 rigid registration for motion correction of 2-photon movies. Suite2P performs an 

iterative phase-correlation-based registration on a small subset of frames to generate a reference image from the 
average projection of those frames. The registration of the entire movie then proceeds with registration by phase 
correlation of each frame to this reference image. We saved Suite2P’s registered output tiff stacks and 
concatenated them into a single hdf5 format compatible with the rest of our processing pipeline.  

Suite2P’s parameter maxregshift has a default value of 0.1, which clips lateral motions of more than 10% of the 
FOV dimension. We found a few examples in our release data where our experiments had real, long-timescale lateral 
shifts of greater than 10%. We increased the maxregshift parameter to 0.2, to allow for registration of these 
experiments. A consequence of this change was that up to 20% lateral shifts were allowed by Suite2P over short 
timescales as well. We observed that these short timescale shifts, often single frames, were likely not physical shifts, 
but struggles of the registration algorithm to register low signal-to-noise frames. Across an entire experiment, we 
monitor the worst-case shifts and establish a motion border which invalidates any ROI which touches it. To prevent too 
much inflation of the motion border exclusion area by these unphysical short timescale shifts, we detrended the x and y 
lateral corrections with a median filter over a 3 second window. We clip frame displacements to a +/-5% window around 
any outlier more than 5% above or below the detrended corrections was truncated to 5%. This allowed us to handle 
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physical long timescale drifts and limit the impact of artifactual short timescale shifts. Any movie frames where the 
lateral shift was truncated were translated to the new truncated translation value.  

For each movie, we produce the following outputs: the registered hdf5 movie for downstream processing, the 
motion correction shifts both from Suite2P directly and after our detrended clipping step, and Suite2P’s output corrXY, 
the value of phase-correlation at the best alignment for each frame. For QC inspection, we generate plots showing the x 
and y lateral shifts and corrXY resulting from motion correction, as well as a video preview showing the movie before 
and after motion correction, side-by-side, averaged to 0.5 frames-per-second and a 10x playback speed. 
 
Cell Segmentation & ROI Filtering 
            The Visual Behavior 2P project used the same segmentation procedure that was developed for the Visual Coding 
2P dataset, published in de Vries et al., 2020. The active cell segmentation module was designed to locate active cells 
within a field-of-view (FOV) by isolating cellular objects using the spatial and temporal information from the entire 
movie. The goal of the active cell segmentation module is to achieve robust performance across experimental conditions 
with no or little adjustment, such as different mouse cell lines, fluorescent proteins (e.g., GCaMP6f or GCaMP6s), and 
FOV locations of visual areas and depths. The process begins with the full image sequence as input to apply both the 
spatial as well as temporal information to isolate an individual active cell of interest without data reduction, such as by 
PCA, and does not make assumptions about the number of independent components existing in the active cell movie. 
Also, in contrast to other methods, this approach separates the individual steps, including identifying and isolating each 
cellular object, computing confidence of each identified object (by object classification) and the step of resolving objects 
overlapping in x-y space (which lead to cross talk in traces), so that each can be improved upon if necessary.  
 
Pre-segmentation  

The motion corrected image sequence was spatially median filtered (using 3x3 pixel kernel) to reduce white 
noise. The sequence was then low pass filtered and downsampled by 1/8 temporally to enhance the signal-to-noise ratio 
(SNR). The processed image sequence was then divided into periods of fixed temporal length p, where p = 50 frames 
(~13.3 sec.). The maximum projection image from each period and the mean image (mu_image) of the whole sequence 
were computed. The maximum projection image from all temporal periods, called Periodical Projection frames PP(t), 
were further normalized to become Normalized Periodical Projection (NPP) frames:  

NPP(t) = MF((PP(t) – mu_image), 3x3) * G(t)  
Where G(t) is the frame intensity normalization gain computed based on the intensity histogram of each PP(t). This is to 
normalize any change in overall intensity across the experiment, and to reduce experiment-to-experiment variability. 
MF(3x3) is median filtering with a 3x3 pixel kernel.  
Note in each NPP(t), a subset of cells can be found with changes in fluorescence during that time period. With sufficient 
experiment length, and with many sweeps of different stimuli, various repetitive cell firing patterns can be found. Cells 
with overlapping spatial positions in x and y can be observed as firing at different time frames, allowing the following 
detection process to identify them individually despite having spatial overlap.  
 
ROI Detection 

Adaptive and mathematic morphological image processing techniques were applied to process each NPP(t). 
After band-pass filtering, an initial binary object map was generated by thresholding the resulting image minus a low 
pass version of itself to capture spatially varying background intensity. Conditional dilation, erosion and connected 
component analysis were applied to filter the candidate binary objects and fill holes. The final set of regions of interest 
(ROIs) in each NPP were identified using another connected component labelling and a simple rule-based classifier. This 
classification was based on comparing measured morphometric attributes (object area, shape, intensity, uniformity, 
etc.) of the objects to the statistics derived from the targeted active cell components in the sample data sets. After each 
frame was processed, a set of candidate ROIs from each NPP were then grouped with candidate ROIs from all other 
NPPs. ROIs within a similar spatial location (defined by the distance between centroids < 5 µm) and with similar 
morphometric attributes (e.g., delta (area or shape) < 20%) across NPP frames were grouped as the same cell object. 
The ROI with the highest contrast and with shape and area within range statistically derived from sample data was 
selected to represent that cell in the mask image and in a composite image for visual QC. ROIs with different spatial 
locations (centroids > 5 µm apart) and or dissimilar morphometric attributes are recorded as different cells.   
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Occasionally two or more spatially overlapping ROIs could be found that were active in the same timeframe and 
were therefore detected as a single ROI for that NPP. Additional steps to classify them as multiple-cell objects were 
taken using their attributes of combined area and shape (eccentricity).  

After ROI detection in each NPP frame and grouping of all ROIs across frames was completed, a set of “unique” 
active cell objects was identified. Cells near the FOV boundaries (3 µm) were eliminated from further consideration due 
to the fact that motion shifts can create boundary effects to the traces computed from these cells. To generate the 
segmentation mask image, all non-overlapping cells were placed in a single mask plane and overlapping cells were 
placed in subsequent planes, to ensure unique identification of all cells.  
 
Crosstalk Removal in Multiscope Data 

Crosstalk between focal planes is a fundamental limitation in multiplexed microscopy systems, such as the 
Multiscope. Details about system hardware and methods used to optimize crosstalk in the data are described above and 
can be found in Orlova et al., 2020 11. Crosstalk removal was performed on fluorescence traces using an ICA-based 
approach (implementation scikit-learn.FastICA), where independent components are estimated by minimizing 
Gaussianity of the data14 (Hyvärinen, 1999).  The assumption is that the two planes are a mixed observation of two clean 
sources and are mixed linearly using a mixing matrix. We assume a mixing matrix of the form [[1-a, a], [b, 1-b]], where a 
and b are in [0,1), and probably around 0.15. After FastICA, we transform the resulting mixing matrix to be of this form 
to recover the proper scaling of the mixed signals. Prior to FastICA, data undergoes whitening; we do not use the built-in 
whitening of the FastICA module (as it appears to contain a bug that affects scaling of the outputs).   

Algorithm description  
The plane whose traces we are correcting is referred to as the signal plane. The plane coupled to it 

(simultaneously acquired with temporal multiplexing) is referred to as the crosstalk plane. The algorithm is run on both 
permutations of signal plane and crosstalk plane, i.e., for each pair, it is run once with plane A as the signal plane and 
plane B as the crosstalk plane and once with plane B as the signal plane and plane A as the crosstalk plane. 

Cell segmentation is performed on each plane independently to generate cell ROIs. We define the set of ROIs as 
those detected in the signal plane. We construct raw signal traces by measuring the average per-pixel flux in each ROI in 
the motion-corrected movie taken from the signal plane (trace extraction). We construct raw crosstalk traces by 
measuring the average per-pixel flux in the same ROIs in the motion-corrected movie taken from the crosstalk plane 
(these ROIs are those detected in the signal plane). For both the raw signal traces and the raw crosstalk traces, raw 
neuropil traces are constructed using the pixels bordering the ROIs. We flag any ROI whose footprint or neuropil 
intrudes on the motion correction border as invalid and remove it from further processing.  

Signal and crosstalk planes are coupled and leak into to each other due the imperfections of the temporal 
multiplexing approach. We assume that, for each ROI, the measured, or raw signal and crosstalk traces are linear 
combinations of clean, or unmixed signal and crosstalk traces, i.e. 
R = M U 
where R is a 2xN matrix (N is the number of timesteps in the traces) such that R[0,:] is the raw signal trace and R[1,:] is 
the raw crosstalk trace. U is a 2xN matrix such that U[0,:] is the unmixed signal trace and U[1,:] is the unmixed crosstalk 
trace. M is the 2x2 mixing matrix relating the two. For each ROI, U[0,:] represents the trace coming from that ROI 
uncontaminated by crosstalk. That unmixed signal is the trace that we want to use in all future processing steps. We use 
Independent Component Analysis (ICA) [1] to solve for U and M. Specifically, we: 

1) Subtract the mean from each trace and find the 2x2 matrix W which will transform (R-mean) into a “whitened” 
dataset whose correlation matrix is approximately the 2x2 identity matrix. 

2) Use scikit learn’s FastICA algorithm to solve for U and M 
3) The scale of the traces is corrected by computing the scaling that will restore the mixing matrix to the assumed 

form of [[1-alpha, alpha], [beta, 1-beta]].  This scaling can be computed by multiplying the inverse of the mixing 
matrix by the vector [1,1].  This transformation is applied to the traces to restore the original scale. 

4) If the off-diagonal elements of M are positive and less than 0.3, ICA has converged to a valid result. Identify the 
unmixed trace that is most closely correlated with the raw signal trace as the unmixed signal trace (ICA is 
agnostic regarding the ordering of unmixed signals).  

5) If ICA failed to converge to a valid result, the ROI is marked as having failed ICA. 
We use all the ROIs that pass the above algorithm to construct an average mixing matrix M for the signal plane. 

The inverse of this matrix is used to unmix any ROIs marked as “failed” in step (4). We find unmixed neuropil traces by 
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taking the mixing matrix used for the associated ROI and multiplying its inverse by the matrix of raw neuropil traces. If 
no ROIs in the plane converged to a valid result, it is impossible to construct an average mixing matrix for the plane and 
we mark the plane as having failed processing. 

We run the unmixed signal and unmixed crosstalk traces through an event detection algorithm described in 
Giovannucci et al. 201915. We define events as a sequence of five timestamps whose sum of log probabilities exceeds a 
threshold (14 in our implementation). We calculate the probability relative to a Gaussian distribution centered on the 
mode trace value whose width is calculated considering the distribution of all trace values less than the mode. We 
define each timestamp that passes this test as an event in the trace. 

For each ROI, we assess whether any events occur in the unmixed signal trace that are independent from the 
events in the unmixed crosstalk trace. We define independent events as those events in the unmixed signal trace which 
do not occur within two timestamps of an event in the unmixed crosstalk trace. If no such independent events occur in 
the unmixed signal trace, we mark the ROI as a ghost (i.e. an ROI that was only detected because of crosstalk 
contamination from the coupled plane) and discard it from future processing steps. 
 
ROI Filtering 

Not all ROIs generated by segmentation are complete individual cell bodies. To exclude ROIs that are not 
actually cell bodies from further analysis, the ROIs are labeled with a multi-label classifier that distinguishes ROIs that 
are considered well defined cell bodies from other ROIs. The set of reasons to exclude an ROI are: the ROI is a union of 
two or more cells; the ROI is a duplicate of another; the ROI is close to the edge of the FOV and is impacted by motion 
such that parts of the ROI are missing from the video; the ROI is likely an apical dendrite and not a cell body; or that the 
ROI is too small, too narrow, or too dim to confidently be considered a cell body.  

The initial ROI filtering was generated by a set of heuristics based on depth, shape, area, intensity, signal-to-
noise, and the ratio of mean to max intensity of the max projection. The initial filtering was used to generate a set of 
training labels, on which a multi-label classifier was trained. The multi-label classifier is implemented using a linear 
Support Vector Classifier trainer for each label (binary relevance) using metrics generated in segmentation combined 
with depth, driver, reporter, and targeted structure as features. The final ROI filtering workflow is to 1) label ROIs that 
fall within the motion cutoff regions at the border, 2) label ROIs using the binary relevance classifier, 3) label significantly 
overlapping ROIs as duplicates, and 4) label ROIs that significantly overlap two or more ROIs as unions.  
 
Demixing Traces From Overlapping ROIS 

The simplest way to extract fluorescence traces, given a set of ROI masks, is to average the fluorescence within 
each ROI. If two ROIs overlap, this procedure will artificially correlate their traces. Therefore, a model is used where 
every ROI has a trace which is distributed across its ROI in some spatially heterogeneous, time-dependent fashion:   

𝐹!" =T𝑊#!"𝑇#"
#

 

where W is a tensor containing time-dependent weighted masks: 𝑊𝑘𝑖𝑡 measures how much of neuron 𝑘’s fluorescence is 
contained in pixel 𝑖 at time 𝑡. 𝑇𝑘𝑡 is the fluorescence trace of neuron 𝑘 at time 𝑡 - this is the desired value to estimate. 𝐹𝑖𝑡 
is the recorded fluorescence in pixel 𝑖 at time 𝑡.   

Importantly, this model applies to all ROIs, including those too small to be a neuron or otherwise filtered out.  
Duplicate ROIs (defined as two ROIs with >70% overlap) and ROIs that are the union of two other ROIs (any ROI 

where the union of any other two ROIs accounts for 70% of its area) are filtered out before demixing, and the remaining 
filtering criteria are applied after demixing. Projecting the movie (𝐹) onto the binary masks (𝐴) reduces the 
dimensionality of the problem from 512x512 pixels to the number of ROIs:  

T𝐴#!𝐹!"
!

=T𝐴#!𝑊#!"𝑇#"
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where 𝐴𝑘𝑖 is one if pixel 𝑖 is in ROI 𝑘 and zero otherwise–these are the ROI masks from segmentation, after filtering out 
duplicate and union ROIs. At a particular time point 𝑡, this yields the simple linear regression:  
𝐴𝐹(𝑡) = (𝐴𝑊𝑇(𝑡))𝑇(𝑡)  
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where the weighted masks 𝑊 are estimated by the projection of the recorded fluorescence 𝐹 onto the binary ROI masks 
𝐴. On every imaging frame 𝑡, the linear least squares solution �̂� are computed in to extract each ROI’s trace at that time 
point.   

It was possible for ROIs to have negative or zero demixed traces �̂�. This occurred if there were union ROIs (one 
ROI composed of two neurons) or duplicate ROIs (two ROIs in the same location with approximately the same shape) 
that the initial detection missed. If this occurred, those ROIs and any that overlapped with them were removed from the 
experiment. This led to the loss of ~1% of ROIs.  
 
Neuropil Subtraction 

The recorded fluorescence from an ROI was contaminated by the fluorescence of the neuropil immediately 
above and below the cell due to the point-spread function of the microscope. In order to correct for this contamination, 
the amount of contamination was estimated for each ROI. The estimated 𝐹𝑁 was done by taking an annulus of 10 mm 
around the cellular ROI, excluding pixels from any other ROIs. In order to remove this contamination, the extent to 
which ROI was affected by its local neuropil signal was evaluated.  

The recorded traces were modeled as 𝐹𝑀 as 𝐹𝑀 = 𝐹𝐶 + 𝑟𝐹𝑁, where 𝐹𝐶 is the unknown true ROI fluorescence trace 
and 𝐹𝑁 is the fluorescence of the surrounding neuropil. In order to estimate the contamination ratio 𝑟 for each ROI, the 
error was minimized 𝐸 = 〈(𝐹𝐶 − (𝐹𝑀 − 𝑟𝐹𝑁))2 + 𝜆Λ(𝐹𝐶)〉𝑡 by jointly optimizing for 𝑟 and 𝐹𝐶. Λ(𝐹𝐶) is the first temporal 
derivate of the cellular trace, weighted by 𝜆 = 0.05; this smoothness constraint on the cellular trace allows per-ROI 
optimization for 𝑟. 〈·〉𝑡 denotes an average over time. Gradient descent was used on 𝑟. At each step of the gradient 
descent, 𝐹𝐶 was solved at the zero gradient of 𝐸. Gradient descent was performed on the first half of the traces and 
computed 𝐸 on the second, so that it is a cross-validation error. After computing 𝑟 and 𝐹𝐶 for an ROI, the neuropil-
subtracted trace 𝐹𝑀 − 𝑟𝐹𝑁 was used as the basis for all subsequent analysis in order to avoid any residual effects of the 
smoothness constraint.   

To standardize the learning rate and initial conditions of the gradient descent, each ROI’s neuropil trace was 
normalized to (0,1). The measured ROI trace was normalized by the same amount, used a learning rate of 10 and initial 
condition of 𝑟 = 0.001. The gradient descent was stopped at the first local minimum of 𝐸. If the resulting 𝑟 was greater 
than 1 or less than 0, or final cross-validation error 𝐸 greater than 2 |〈𝐹𝑀〉𝑡|, the gradient descent was attempted again 
with a 10x slower learning rate. If those convergence criteria were still not met, an initial condition of 𝑟 = 0.5 was used. If 
those convergence criteria were still not met, that ROI was flagged and after computing 𝑟 for all other ROIs in the 
experiment, set 𝑟 for un-converged ROIs to the mean.   

To validate the performance of our algorithm, it was tested on a publicly-available benchmark dataset (Chen et 
al., 2013). A distribution of contamination ratios was obtained, centered nearly on the author’s choice of 0.7 (mean r of 
0.68 vs their choice of 0.7), but with significant heterogeneity. For this benchmark dataset and using the same 
optimization parameters as for the Allen Brain Observatory – Visual Coding data, 6 of 36 cells failed the initial neuropil 
subtraction with r>1, and would have gone through the additional steps outlined above.  
 
dF/F Calculation 

We generate normalized, detrended traces of neuronal activity by performing the following algorithm on each 
trace:   

First, we estimate the standard deviation of the noise in the trace. We do this by centering the trace on the 
curve resulting from applying a median filter with kernel size 3.33 seconds to the trace. To avoid including signal events 
in our estimate of noise, we discard any values that exceed 1.5 times the absolute value of the minimum of this 
centered trace. We make a first estimate of the standard deviation of noise in the trace as 1.4826 times the median 
absolute deviation of this truncated, centered trace. We further discard any values that exceed 2.5 times this first 
estimate of the standard deviation and finally return 1.4826 times the median absolute deviation of the 
remaining centered trace values as the standard deviation of noise in the trace.  

Next, we calculate the dF/F trace. We define the baseline activity in the trace as the result of applying a median 
filter with kernel size 600s to the trace. We subtract this baseline from the raw trace and normalize the difference by the 
baseline. At timesteps where the baseline trace is less than the standard deviation of noise calculated above, we 
normalize by the standard deviation of noise, instead. This gives the dF/F trace.  

Finally, we detrend the dF/F trace. We estimate the trend in the dF/F trace by applying a median filter with 
kernel length 3.33 seconds. To prevent anomalously large trends from arising, we use the same algorithm we used to 
estimate the standard deviation of noise in the raw trace to estimate the standard deviation of noise in 
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the dF/F trace. We constrain the trend to never exceed 2.5 times this estimated standard deviation of noise in 
the dF/F trace. We subtract the trend from the dF/F trace and report this as the detrended dF/F trace.  
 
Session to Session Cell Matching 
Multiple 2-photon calcium imaging movies were acquired for each imaging plane across multiple imaging sessions. To 
map cells between sessions, we used an automated matching algorithm. The module has 4 steps: 

1. Determining the spatial transform between each pair of sessions using image registration techniques on the 
average projection images of the sessions. 

2. Applying the derived spatial transform to segmented cell masks. 
3. For each pair of sessions, solving the linear assignment problem (i.e. bipartite graph matching) to determine 

which pairs of masks are most likely to be related, based on the inter-centroid distance of the segmented masks 
and the intersection over union (IOU) of the masks. A 10 pixel distance threshold is placed on the inter-centroid 
distance to ensure only closely overlapping masks were matched. 

4. A graph combination method was used to join all the bipartite graphs to determine the most likely label sets 
that match across all sessions. 

Code for pairwise session cell matching is available here: https://github.com/AllenInstitute/ophys_nway_matching  
 
Determining the spatial transformation 

The module first used an intensity-based method to register the average intensity projection images of each pair 
of sessions, producing a Euclidean transformation that registered each image pair.  We found that a single image 
registration strategy did not work for all cases. In some cases, the true lateral shifts between two experiments were 
too large for the ECC registration algorithm. In other cases, the border in the projection images biased the 
registration towards matching borders and not cell soma. In still other experiments, a histogram equalization step that 
helped most experiments resulted in a degraded registration.  

We implemented a “meta-registration” where 4 different registration sequences were attempted. Each 
sequence employed an initial cropping step to eliminate the motion border problem. The sequences employed varying 
combinations of ECC, PhaseCorrelation, and contrast adjustment. After each of the 4 sequences were attempted, we 
chose the best candidate based on the structural similarity metric (SSIM) between the two registered images. If none of 
the candidate sequences improved SSIM beyond that achieved with unregistered images, we flagged the registration as 
a failure for QC inspection.  
  In a few cases, there were still some unexplained failures to register. In these cases, we found that the average 
projection intensity images had low contrast, but the maximum projection intensity images had more visible features. By 
substituting in the maximum projections for the registration step, we achieved good registration and good cell matching 
for these containers.  
 
Applying the spatial transformation to cell masks 

The cell masks were materialized into a set of images, such that no ROIs overlapped in any one image. We then 
applied the relative transformation found from the intensity projections to these materialized images, to get the cell 
masks in an aligned space. 
 
Solving the linear assignment problem between 2 sessions 

To map cells, a bipartite graph matching algorithm (the Blossom method) was used to find correspondence of 
cells between sessions. The algorithm used cell labels in the pair-wise experiments as nodes, and the edges of the graph 
were weighted with weights, 𝑤 : 

𝑤 =
𝑑

𝑑%&'
+ C1.0 −

𝐼
𝑈H
	

	
where 𝑑 is the distance between the 2 mask centroids (in pixels), 𝑑%&' = 10 pixels, 𝐼 is the number of pixels that are 
shared between the 2 masks (the intersection), and 𝑈 is the total number of pixels covered by the two masks combined 
(the union). The graph edge for any pair of masks with 𝑑 > 10 pixels was assigned a very large weight, eliminating that 
pair as a candidate match. 

The original version of this module used the “Hungarian” method to minimize the total weight. SciPy has an 
equivalent implementation of that method. We found that the solution from the “Blossom” method was more robust to 
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order permutations of the inputs. We used the networkx implementation of the “Blossom” method. As this 
implementation seeks to maximize total weight, we inverted the weights, taking care to prevent division-by-zero: 

𝑤 =
1

1 + 𝑤
 

 
By maximizing the summed weights of edges, the bipartite matching algorithm found the “best match” between cells in 
each pair of experiments.  
 
Joining the pairwise bipartite graphs 

All the pairwise bipartite graphs were naively combined. This combined graph is not constrained to avoid 
labeling conflicts. Matching was performed on the full set of ROIs identified by the segmentation algorithm, but ROIs 
that were deemed invalid by the ROI filtering step were not included in the final set of matched cells. 

For quality control checks, we produced standard plots of pairwise registrations across sessions, as well as 
quantification of the fraction of ROIs matched across sessions. Session pairs with visible failures to register (clear 
features in the image were not aligned), or with very low fraction of matched cells (<10% matching between session 
pairs), were manually evaluated and an attempt was made to optimize the registration process to produce accurate 
registration. Session pairs that were not possible to register were excluded from the dataset.  

The code for performing field of view registration and cell matching is tested in a CI/CD system and openly 
available at: https://github.com/AllenInstitute/ophys_nway_matching  
 
Calcium Event Detection 

We used the FastLZeroSpikeInference (“FastLZero”) to identify events in traces derived from the 2P movies16. 
FastLZero fits a trace to a sum of exponentially decaying spikes, with the timescale of decay determined by a single 
parameter (gamma), while imposing an L0 regularization to minimize the number of events used to fit. Gamma has been 
empirically determined for each genetically defined cell type by running the MLSpike autocalibration routine on all 
available recordings and determining the maximum likelihood decay constant across the distribution of fitted decay 
constants for available neurons of any given cell type17. 

The relative weight in the optimization penalty between number of events used and best residuals is controlled 
by a regularization factor (lambda) that controls the tradeoff between missing events (false negatives) and overfitting of 
noise with extraneous events (false positives). Lambda needs to be determined empirically as a function of the noise 
level present in each recording. We iteratively searched the regularization factor space to find the regularization factor 
where the smallest event provided by FastLZero was at least two times the estimated noise level of the fluorescence 
trace. The noise estimator was initially optimized for experiments recorded at 31Hz (single-plane imaging with 
Scientifica 2-photon microscopes) and validated against ground truth data manually annotated by a human expert.  

Multiscope experiments were recorded at 11Hz, and we observed that the same multiplicative factor (2.0) 
resulted in many more small amplitude events than in the 31Hz data when probed with synthetic calcium data. One can 
rationalize this difference intuitively by noting that the characteristic timescales of fluorescence decay do not change 
based on sampling rate, but the noise estimation does. Thus, our noise estimator, which was only validated for 31Hz 
data, systematically underestimated the noise for 11Hz data. To correct for the effects of sampling rate on the noise 
estimation, for Multiscope, we empirically determined the equivalent multiplicative factor to be 2.6 by identifying the 
value that minimized the discrepancy between event magnitude traces extracted (using factor of 2.0) from Scientifica 
data sampled at 31 Hz, and event magnitude traces extracted from the same data but after downsampling by a factor of 
3.  
 
Eye Tracking Data Processing 

A standardized pipeline was built for fitting ellipses to the pupil, eye (visible perimeter of the eyeball), and corneal 
reflection of the right eye, based on points tracked using the open source software DeepLabCut 
(https://github.com/DeepLabCut/DeepLabCut). We used DeepLabCut, initialized with a pre-trained ResNet 50 deep 
residual network, to track (up to) 12 points along the perimeters of the eye, pupil, and corneal reflection. 
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Ellipses were then fit to the tracking points and the ellipse fit parameters were saved to disk. Validation against hand-
annotated ‘ground truth’ frames confirmed that a single ‘universal’ model, trained on a broad selection of data samples, 
robustly generalized on held-out data across different physiology rigs and individual animals.  

All code for processing of the eye tracking data is visible in the brain_observatory.behavior.eye_tracking_processing 
module of the AllenSDK. The eye tracking data is available as the ‘eye_tracking’ dataframe in the session object. The 
dataframe has the following columns: 

• Timestamps: the timestamp of every frame 
• {pupil, eye or cr}_center_x: the x-position of the center of the pupil, eye or corneal reflection ellipse fit on that 

frame, in pixel space of the eye tracking movie frame. 
• {pupil, eye or cr}_center_y: the y-position of the center of the pupil, eye or corneal reflection ellipse fit on that 

frame, in pixel space of the eye tracking movie frame. 
• {pupil, eye or cr}_width: the  (more) horizontal half-axis of the ellipse fit of the pupil, eye or corneal reflection 
• {pupil, eye or cr}_height: the  (more) vertical half-axis of the ellipse fit of the pupil, eye or corneal reflection 
• {pupil, eye or cr}_phi: the angle to the (more)horizontal axis of the ellipse fit of the pupil, eye or corneal 

reflection, measured CCW from the x-axis of the image frame. 
• likely_blink: a Boolean defining frames that have been identified as likely outlier fits, which is often caused by 

blinking/squinting of the eye. 
• pupil_area: the area of the pupil, assuming that the pupil is a circle with a diameter defined by the major axis of 

the ellipse fit. Set to NaN where likely_blink == True. 
• pupil_area_raw: the area of the pupil, assuming that the pupil is a circle with a diameter defined by the major 

axis of the ellipse fit. No outliers/likely blinks are removed. 
• {eye or cr}_area: the area of the eye or corneal reflection ellipse fit. Set to NaN where likely_blink == True. 
• {eye or cr}_area_raw: the area of the eye or corneal reflection ellipse fit. No outliers/likely blinks are removed. 

Briefly, the ellipse fit parameters produced by the processing pipeline were loaded for each session. It was assumed that 
the pupil is actually round, but when viewed obliquely, it appears as an ellipse, the major axis of which reflects the pupil 
diameter. Thus, the area of the pupil is calculated on every frame as the area of a circle with a diameter defined by the 
longest axis of the ellipse on that frame. The area of the ellipses for both the corneal reflection and eye ellipse fits are 
calculated using the standard formula for the area of an ellipse.  

On frames where the animal is blinking, tracked points may be missing or the confidence of tracked points can 
be low, and ellipse fits either fail completely or may be fit erroneously. To avoid including these erroneous fits in 
analysis, an algorithm attempts to identify these blink frames, adding a column to the eye_tracking dataframe called 
‘likely_blink’. Likely blinks are identified as frames where either the eye or pupil fit is missing, or where the z-scored 
value of the eye or pupil areas exceeds 3. In addition, two frames before and after every likely_blink identified by the 
above methods are also labeled as likely blinks. This is to avoid the possibility of analyzing erroneous fits caused by a 
partially opened eye.  

It is important to note that the outlier frames identified by the likely_blink algorithm are not always caused by 
blinks. Instead, they may be frames where the DeepLabCut algorithm simply failed to identify a reasonable fit, triggering 
the outlier detection portion of the algorithm.  
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Data analysis  
 
Behavior performance 
 Reward rate was computed as the average rewards per second in a rolling 320 second window, over each 60-
minute behavior session. Engaged periods of the session were defined as having >2/3 rewards per minute.  
 Response probability for image changes (i.e. hit rate, off-diagonals in Figure 1f and Extended Data Fig. 2e) was 
computed as the fraction of stimulus changes during engaged periods with a correct licking response. Response 
probability for non-changes (i.e. false alarm rate, diagonals in Figure 1f and Extended Data Fig. 2e) was computed as the 
fraction of stimulus presentations that could have been a change (i.e. not during reward window, reward consumption 
“grace period”, or 2 second period prior to drawing a change time) when an incorrect response was emitted. Response 
probability was computed for each session then averaged across sessions with a given image set (Familiar or Novel) to 
produce Figure 1f and Extended Data Fig. 2e.  
 The value of d-prime, also known as sensitivity index, was calculated as the relative difference between the 
inverse cumulative normal distribution function of the hit rates and false alarm rates. Hit and false alarm rates were 
computed as described above (hit rate as response probability for image changes and false alarm rate as response 
probability for stimulus presentations that could have been a change but did not change). d-prime was computed for all 
image transitions during engaged periods for Extended Data Figs. 1f and 2d. For Figure 1g, d-prime was calculated using 
the hit rate for the 2 most detectable image transition pairs, compared to the corresponding non-change stimulus 
presentations for the images in the pairs, in order to facilitate a direct comparison of the impact of novelty on behavior 
performance, independent of image detectability.  
 
Normalized pupil width 

Pupil width, defined as the horizontal half-axis of the ellipse fit of the pupil (described above in “Eye Tracking 
Data Processing”), was pre-processed by filtering out “likely blinks” and linearly interpolating values. Pupil width was 
then normalized to the 5-minute gray screen period at the beginning of the session to account for any differences in 
pupil area resulting from slightly different placement of the dichroic mirror reflecting the eye to the eye tracking camera. 
This allowed a direct comparison of normalized pupil width across Familiar, Novel, and Novel+ sessions in Extended Data 
Fig. 8e,f. Normalized pupil width was aligned to the time of image changes or image omissions within each session and 
averaged, then averaged across all sessions of a given type.  

 
Lick rate 
 For each session, the lick rate was computed as a rolling average of the number of licks in a 100ms window (6 
frames at 60Hz acquisition rate) to give a continuous timeseries in units of licks / 0.1 second, then multiplied by 10 to 
give licks / 1 second. The rolling lick rate was aligned to the time of image changes or image omissions within each 
session, then averaged across sessions and mice, to produce the average lick rate at each timepoint relative to changes 
or omissions, as shown in Extended Data Fig. 8c,d. 
  
Temporal alignment of 2P and behavior 

Temporal alignment is needed to link and analyze data streams collected at different frame rates. In our 
experiments, 2-photon movie timeseries collected on Scientifica microscopes for single-plane imaging were collected at 
30Hz. 2-photon movie timeseries collected on the Multiplane Mesoscope were collected at 11Hz. Running speed, licking, 
and reward delivery were collected at 30Hz, at the frequency of the stimulus display. Eye tracking movies were collected 
at 60Hz.  

To generate stimulus locked traces of neural activity, we extracted a subset of each cell’s dF/F trace (or detected 
events) in a window around each stimulus onset time. To prevent shifting of timestamps to align 2-photon data to 
stimulus times, we interpolated neural activity traces to a 30Hz sampling rate relative to the stimulus onset time for 
each trial. This allowed more accurate averaging of neural signals across trials, as each trial’s timestamps were 
interpolated relative to the stimulus start time. A demonstration of this procedure can be found on GitHub, along with 
the functions to perform the alignment.  
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Response characterization 
All response analyses were performed using detected calcium events smoothed with a causal half-gaussian filter 

with scale 65ms. To remove aliasing between the neural activity timestamps and stimulus timestamps all continuous 
signals were interpolated onto stimulus-aligned timestamps, as described above.  

 
Trial level metrics 

For each 2-photon experiment, a pandas dataframe was created containing stimulus aligned traces (aligned and 
extracted as described above) and associated metadata for every stimulus presentation and stimulus omission during 
the behavior session. In addition to a segment of each neuron’s trace in a window around the stimulus onset time, we 
computed the mean response in a 500ms window after stimulus onset (hereafter referred to as mean response for a 
given stimulus presentation). For stimulus omissions, we used a 750ms window to capture the full window prior to the 
next stimulus, based on empirical observation of omission ramping in Vip neurons. The significance of the response to 
each stimulus presentation was computed by comparing the mean response in the 500ms (or 750ms) stimulus window 
with the mean response in a 500ms (or 750ms) window taken from a shuffled distribution of that neuron’s activity 
during the gray screen spontaneous activity period where no stimulus was present. A p-value was calculated by 
comparing these values across 10,000 shuffles and computing the fraction of those shuffles where the mean stimulus 
response was larger than the mean response in the shuffled data.  
 
Population average timeseries 

To produce a population average timeseries across all neurons within a given cell class, stimulus aligned traces 
were aggregated over a given condition (ex: change aligned or omission aligned) and averaged for each neuron, then 
averaged across all sessions of a given type (ex: Familiar, Novel, Novel+) and displayed +/-SEM in Figures 2b-d, i-k. The 
average timeseries for all neurons are shown as heatmaps for each condition in Extended Data Figure 4.  

For behavioral timeseries, the stimulus aligned traces for all trials of a given condition were averaged for each 
session, then averaged across sessions, and displayed +/- SEM in Extended Data Fig. 8.  
 
Population average metrics 

To compute the trial averaged response to image changes, we selected all stimulus presentations corresponding 
to image changes (regardless of image identity) in a given session, then took the average of the mean response in the 
500ms window following change onset across all change trials for each neuron. The same procedure was used to 
compute each neuron’s average response across all pre-change stimuli. For omissions, the same procedure was applied 
using a 750ms window after the time the stimulus would have been displayed if it were not omitted. See ‘get_mean_df’ 
function here: 

For each of these conditions (change, pre-change, omitted), we created a distribution of mean response values 
across neurons for each experience level (Familiar, Novel, Novel+) and report the mean +/-95% CI in Figures 2e,f&l.  

To test whether response distributions were significantly different across experience levels, areas, or depths, we 
used one-way ANOVA, followed by Tukey HSD to compare population means across the conditions being compared.  A 
p-value of 0.05 was used as the significance threshold.  
 
Fraction responsive neurons 
  A neuron was considered “responsive” for a specific condition if at least 25% of trials for that condition (ex: 
changes, omissions) had a p-value > 0.05 (p-value determined by comparing each trial’s mean response to a shuffled 
distribution as described above in “trial level metrics” section). The fraction of responsive neurons for each session was 
then calculated as the number of “responsive” neurons divided by the total number of neurons. The average fraction of 
responsive neurons across sessions for each experience level is reported in Extended Data Figure 4.  
 
Population decoding 
General methodology for decoding population activity 

A linear SVM (Python scikit-learn package) was trained on each bin of the population activity in each session. 
Population activity was aligned on either the image changes or omissions (Figures 2g, m, n, Extended Data Figs. 5, 6). 
Time bins within the window [-0.5 0.75] sec surrounding the image change (or omission) were used for classification. 
One classifier was trained per time bin (non-overlapping 93ms time bins for Mesoscope experiments, and 33ms time 
bins for Scientifica experiments). Decoding analysis was performed on the full population of neurons recorded in each 
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session (Figure 2g, m, n), also on the “cell matched” population (Extended Data Fig. 4). To obtain the “cell matched” 
population, neurons were matched across 3 sessions: the last Familiar session, the 1st Novel session, and the 2nd Novel 
session. Similar results were found from both populations (full and cell matched). 

Details of the decoding method are explained in Orlova et al. 201911. In brief, to break any dependencies on the 
sequence of trials, we shuffled the order of trials for the entire population. L2 regularization was used to avoid over-
fitting. 5-fold cross validation was performed by leaving out a random 1/5 subset of trials to test the classifier 
performance, and using the remaining trials for training the classifier. This procedure was repeated 50 times. A range of 
regularization values was tested, and the one that gave the smallest error on the validation dataset was chosen as the 
optimal regularization parameter. Classifier accuracy was computed as the percentage of testing trials in which the class 
was accurately predicted by the classifier and summarized as the average across the 50 repetitions of trial subsampling. 
A minimum of 10 trials and 3 neurons was required to run the SVM on a session. The inferred spiking activity of each 
neuron was z-scored before running the SVM. 
  
Decoding image change occurrence 

To address whether population activity in single trials carries a signal about image changes, population activity 
following an image change was classified against the activity following a non-change image (Figure 2g; Extended Data 
Fig. 5b). For the non-change image, the image immediately preceding the image change was used. One SVM was trained 
per time bin in the window [-0.5 0.75] sec surrounding the pre-change image and image change. The input to each SVM 
was formed in the following way: population activity at time t relative to each image change (class 1; size: n x m, where 
n: number of image changes; m: number of neurons) was vertically concatenated with the population activity at time t 
relative to each pre-change image (class 0). This was done for all image changes and pre-change images in the session 
(SVM input size: 2*n x m, where n: number of image changes; m: number of neurons), allowing to study how the 
population activity at time t after an image change was distinct from the activity at time t after a non-change image. The 
output of the SVM constituted of two classes, representing image changes and no changes. 
  
Decoding image identity 

To address whether population activity in single trials carries information about image identity, population 
activity following an image change was classified according to the image identity (Extended Data Figure 5a). One SVM 
was trained per time bin in the window [-0.5 0.75] sec surrounding the image change. The input to each SVM was 
formed in the following way: population activity at time t relative to the image change was concatenated for all image 
changes (SVM input size: n x m, where n: number of image changes; m: number of neurons). The output of the SVM 
constituted of 8 classes, representing the 8 different images presented in each session. 
  
Decoding omission occurrence 

To address whether population activity in single trials carries a signal about omissions, population activity 
following an omission was classified against the activity during the gray screen (Extended Data Fig. 6a). Gray screen 
activity was taken from the time bin immediately preceding the omission. One SVM was trained per time bin in the 
window [-0.5 0.75] sec surrounding the omission. The input to each SVM was formed in the following way: population 
activity at time t relative to each omission (class 1) was concatenated with the population activity at time t-1 relative to 
each omission (class 0, gray-screen activity). This was done for all omissions in the session (SVM input size: 2*n x m, 
where n: number of omissions; m: number of neurons). The output of the SVM constituted of two classes, representing 
omissions and no omissions, i.e., gray screens. 
  
Decoding image identity from omission-evoked activity 

To address whether population activity following omissions carries information about the identity of the 
subsequent image, population activity following an omission was classified according to the post-omission image 
identity (Extended Data Fig. 6b). One SVM was trained per time bin in the window [-0.5 0.75] sec surrounding the 
omission. The input to each SVM was formed in the following way: population activity at time t relative to omission was 
concatenated for all omissions (SVM input size: n x m, where n: number of omissions; m: number of neurons). The 
output of the SVM constituted of 8 classes, representing the 8 different images that followed the omission in each 
session. 
 
Summary quantification of decoding results 
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To quantify the magnitude of population decoding accuracy, the decoding accuracy trace of each experiment 
was averaged over 400 ms after image (or omission) onset for decoding image changes, image identity, and post-
omission image identity, and over 750ms after omission onset for omission decoding analysis. This quantity was 
averaged across all experiments collected using both single and multi-plane two-photon imaging (Figures 2g, m, n) 
  
Statistical tests 

We used two-way ANOVA, followed by Tukey HSD to compare population decoding accuracies across 
experience levels (Familiar, Novel 1, Novel >1). Two-sided t-test was used to compare correlations between the real and 
shuffled data, for each experience level. A p-value of 0.05 was used as the significance threshold. 
 
 
Regression model 
Our regression model is a linear model with time-dependent kernels with a gaussian noise model. Each model feature is 
a vector𝑓!(𝑡), and was convolved with a learned kernel 𝑘!(𝑡) to produce the predicted model component of that feature 
𝑓!(𝑡) ∗ 𝑘!(𝑡). Model components were summed together to produce the full model response 𝑟(𝑡)  =  ∑ 𝑓!(𝑡) 

 ! ∗ 𝑘!(𝑡). 
The learned kernels were instantiated as vectors of weights. The length of each feature kernel was determined using 
domain knowledge and trial and error. For continuous features (running speed and pupil diameter) 𝑓!(𝑡) was a time-
series containing the data series at each time point. For discrete features 𝑓!(𝑡) was 1 on timesteps where that feature 
occurred, and 0 elsewhere.  
 
Stimulus pre-processing 

For each cell, we fit the model to detected calcium events smoothed with a causal half-gaussian filter with scale 
65ms. This smoothing step was performed in order to fit the model to a continuous signal. To remove aliasing between 
the neural activity timestamps and feature timestamps all continuous signals were interpolated onto stimulus-aligned 
timestamps. Discrete features were binned onto the nearest stimulus-aligned timestamp. For a given experiment, if a 
feature had less than 5 discrete events, that feature was not included in the model. Continuous features (pupil diameter 
and running speed) were standardized to have mean zero, and unit variance. 
 
Toeplitz Matrix Implementation 

Convolutions are time-invariant linear shift operators, which allowed us to implement the convolution of kernels 
with feature timeseries as a banded toeplitz matrix operation 𝑦  =  𝑊𝑥	. Here 𝑦	 is the 1d time-series for a cell, 𝑥	 is a 
vector of all kernel weights concatenated together, and W is a toeplitz matrix with diagonal bands that map kernel 
weights onto time-shifted features. 
 
Closed form solution and ridge regularization 

The toeplitz matrix implementation with a gaussian noise model yields the standard solution for ordinary least 
squares regression: 𝑥 = (𝑊)𝑊)*+𝑊)𝑦. We added an L2 ridge regression penalty to the cost function, resulting in the 
following solution: 𝑥 = (𝑊)𝑊 + 𝜆𝐼)*+𝑊)𝑦 where 𝜆	 is the L2 penalty. We fit the model using 5-fold cross validation. 
We split each session into 50 intervals, and randomly assigned 10 intervals to each cross-validation fold. Therefore, each 
of the 5 folds were intermingled in time. To determine the hyper-parameter 𝜆	 we evaluated the model on a grid of 
potential 𝜆	values from 0 to 500, and for each experiment we selected the 𝜆	that resulted in the best test-set 
performance across cells in that experiment. The training/test splits were different for hyper-parameter selection than 
fitting the model for analysis. 
 
Model evaluation 

We evaluate our model by computing the explained variance: ,-!"!#$
% *-&'()*+#$

% .
-!"!#$
% . If the smoothed calcium event 

trace had no activity (no events) on a cross-validation fold, then then cell has no variance on that fold. Therefore, for 
numerical stability, when a cell had no activity on a cross-validation fold, the model explained variance was set to 0. 
 
Unique contribution of model features 

To evaluate the contribution of each kernel in explaining each cell's activity we fit a series of reduced models 
where individual kernels or groups of kernels (components) were removed from the model and the model was refit. We 
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compute a coding score which measures the fraction of the full model's explained variance that is lost when using the 
reduced model. This coding score therefore captures the unique explained variance from that kernel or set of kernels. 

The raw coding score for feature i is given by: ,+*/0&'*+,'*,).
/0.+$$

. Some model features are only present during a portion of 

the session, we therefore adjust the raw coding score to only evaluate the explained variance on the time points when 

that feature was present. The adjusted coding score for feature i is given by:  ,+*/0
("))&'*+,'*,).

/0(")).+$$,)
. Here 𝑡!  indicates 

timepoints where feature i was in the model, and 𝑉𝐸(𝑡!) is the explained variance only on the timepoints where feature 
i was in the model. For numerical stability, the coding scores were bounded between (0,1). Further, if the full model 
explained less than 0.5% of the variance on the relevant time points, the coding score was set to 0. In Extended Data Fig. 
9e we also compute coding scores for reduced models where all features were removed except for the feature of 
interest. In this case the coding score is computed by: /0

("))&'*+,'*, )
/0(")).+$$, )

. 

 
Statistical tests on coding scores 

We used one-way ANOVA, followed by Tukey HSD to compare population coding scores across experience levels 
(Familiar, Novel 1, Novel >1).  A p-value of 0.05 was used as the significance threshold. 
 
Functional clustering  
Data Selection 

For the functional clustering analysis in Figure 4 we selected neurons that were successfully matched across 
sessions with each of the three experience levels (Familiar, Novel, Novel+; Extended Data Fig. 2a-c, Extended Data Fig. 
3), regardless of their overall activity level or encoding strength. Feature coding of each of these neurons was 
represented by a 12-element vector of coding scores (see ‘unique contribution of model features’) describing the four 
main model components (all images, behavioral, omissions, and task) across three experience levels.  
 
Across Session Normalization of Coding Scores 

Our functional clustering analysis is restricted to cells recorded across all three experience levels and specifically 
seeks to assess changes across experience levels. We therefore normalized the coding scores across sessions to account 
for changes in the overall full model explained variance for a single cell across sessions. 

𝑉𝐸(𝑡!)𝑉𝐸(𝑡!)𝑚𝑎𝑥𝑓𝑢𝑙𝑙, 𝑖
,+*/0("))&'*+,'*, ).
/0("))012.+$$,)

 

 
Spectral Clustering 

We performed a clustering workflow that used spectral clustering in combination with a consensus clustering 
method18 to isolate robust clusters that are not influenced by random initial conditions. In spectral clustering, the 
clusters are determined by their ‘connectivity matrix’, where nearby points (nodes in the graph) are assigned to the 
same cluster. We computed the connectivity matrix using a radial basis function. Next, the data was projected into a 
low-dimensional space using Laplacian embedding, and then each datapoint was assigned a label using the K-means 
strategy.  

This spectral clustering algorithm was run 150 times with optimal k clusters determined as described below (see 
‘Selecting Optimal Number of Clusters’). To perform consensus clustering on these 150 iterations we computed a co-
clustering association matrix and then calculated the probability of any given neuron being assigned to the same cluster 
with every other neuron. Lastly, we applied hierarchical agglomerative clustering to the association matrix to obtain final 
cluster labels. We used scikit-learn for clustering analysis. 

To answer whether clustering resulted in reduction of variability in the dataset, we computed sum of squared 
values for clustered and unclustered data: ∑(𝜇 − 𝑥!)3 

   Where, for clustered data,  𝜇	is the mean of coding scores of cells 
in that cluster, while for unclustered data  𝜇	is the mean of encoding scores for all cells.  𝑥!  is an array of encoding scores 
for each cell. For all three cell classes, clustering significantly reduced the variance in coding scores. However, the 
reduction in variance was smaller for Vip inhibitory neurons than Sst or excitatory cells (Mean SSE values post-clustering: 
Excitatory = 0.17, Sst = 0.17, Vip = 0.23). 
 
Selecting Optimal Number of Clusters 
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For each cell class we estimated the optimal number of clusters using two methods: gap statistic and eigengap 
values (i.e. spectral gap). To compute the gap statistic, we shuffled the coding features to create a null distribution. In 
this shuffle, the dropout scores for each regressor and experience level are shuffled within their own category across 
cells, which preserves the original distributions but breaks structure across days and regressors. Gap statistics were 
computed by clustering both shuffled and original data 20 times for k clusters range from k = 2 to k = 25. For each k 
number of clusters, we computed the mean of within cluster variability as measured by pairwise Euclidean distance for 

cells in each cluster: 𝐷i =
∑ 56(),4)6

#
, where 𝐷i is the grand mean of means of pairwise distances, �̅�, between points i and j in 

each n cluster with total k clusters. The peak difference between reference (null hypothesis based on shuffled data) and 
measured (alternative hypothesis based on original data) values indicates the largest reduction in data variability due to 
clustering (Extended Data Fig. 15c). To obtain eigengap values, we computed the eigenvalues of the Laplacian graph19 
(Extended Data Fig. 15c). We used the last non-zero peak of the sorted eigenvalue differences as an optimal number of 
clusters. Based on inspection of both the gap statistic and eigengap results we determined an optimal number of 
clusters for each of the three cell classes (excitatory, k = 10; Sst, k = 5; Vip, k = 10).    
 
Cell ID Shuffle  

To investigate whether the functional clusters that we obtained from our dataset are cell specific or are a 
property of coding score distributions across days, we performed a cell ID shuffle analysis (Expended Data Figure 17a). 
By shuffling cell ID matching across days while preserving coding scores within experience level, we perturbed within cell 
coding changes across days while maintaining overall effects of novelty at a population level. We then followed the 
same clustering steps as described above using predetermined number of clusters (Exc k = 10, Sst k = 5 Vip = 10, 
Extended Data Fig. 17b-d), after each shuffle iteration. On each iteration, post-shuffle clusters and original clusters were 
matched using lowest sum of squared value (SSE, Extended Data Fig. 17e). If all SSE values exceeded maximum threshold 
for a match (Exc = 0.10, Sst = 0.15, Vip = 0.15), we concluded that a given original cluster was not found among post-
shuffled clusters, and the matched cluster size was set to zero. We then compared mean size of matched post-shuffled 
clusters with the size of the original clusters to determine the pattern of coding across days in each cluster is equally 
likely to obtain by chance. Cluster size differences were marked as significant post chi-squared-test with Benjamini-
Hochberg correction. 
 
Distribution of Clusters Across Cortical Depth and Areas 

To determine whether each neural cluster was evenly distributed across the four test locations (V1/LM at two 
cortical depths, upper < 250 µm, lower => 250 µm, Figure 4g, Extended Data Fig. 16), we performed a chi-squared test to 
compare the difference between observed and expected proportions of cells in each cluster. We used the Benjamini-
Hochberg procedure to correct for multiple comparisons. To compute proportions, we first normalized number of cells 
in each cluster and location to the total number of cells in a given location across clusters. Expected proportion of cells 
per cluster was computed as an average of normalized observed proportions for each cluster. 
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Extended Data Figure 1. Dataset description & behavior training procedure

a

d

Extended Data Fig. 1 | Dataset description and behavior training procedure. a, Schematic and table describing single-plane and multi-plane 
imaging configurations for each transgenic mouse line. Single plane imaging sessions always occurred in the primary visual cortex, VISp at a 
single cortical depth per session. Multi-plane imaging sessions consisted of up to 8 imaging planes in two cortical areas, VISp and VISl, across 4 
cortical depths per area in each session. b, Schematic of behavioral training procedure. Mice are automatically progressed through a series 
of training stages, beginning with static gratings and ending with flashed natural scene images, before being transitioned to 2-photon imaging. 
During the 2-photon imaging stage of the experiment, mice perform the task with either familiar or novel images. In some sessions, mice 
passively view the same stimuli in open loop mode with the lick spout retracted after being given their daily water. c, Left, number of sessions 
with image stimuli and gratings during behavioral training. Middle, number of sessions with familiar or novel images prior to 2-photon imaging 
sessions of each of the 3 types included in this study (Familiar, first exposure to Novel images, and a subsequent re-exposure to the novel 
image set, Novel+). Right, number of sessions with exposure to novel images prior to the Novel+ session included in physiology analysis. d,
Training history for all mice included in the study, sorted by transgenic mouse line and then by total number of sessions per mouse. Colors 
indicate training stages, as in b. e, Number of sessions spent in each behavior stage across transgenic mouse lines (legend shared with panel d).  
f, Behavioral performance, quantified as the maximum d-prime value over the course of a session, across training stages per mouse line 
(legend shared with panel d).
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Cohorts 1 & 3

Extended Data Figure. 2. Selection criteria for physiology dataset and behavior during 2P

Extended Data Fig. 2 | Selection criteria for physiology dataset and behavior during 2P imaging. a, Schematic depicting the 3 cohorts of mice 
that were trained and imaged as part of the study, for both single-plane and multi-plane 2-photon imaging configurations. Cohorts 1 and 3 
were trained using image set A (red), and cohort 2 was trained using image set B (blue). During imaging, active behavior sessions were 
interleaved with passive viewing sessions where mice viewed the stimulus in open loop mode with the lick spout removed after mice had 
received their daily water. Only active behavior sessions meeting specific criteria were included in analysis (with the exception of Extended 
Data Fig. 7a,b). b, Each image set consisted of 8 natural scene images. Image set A (red) was the familiar set for cohorts 1 & 3, image set B 
(blue) was the familiar set for cohort 2. c, For each transgenic line in each cohort (cohorts described in panel a), table describing numbers of 
mice, unique neurons (total segmented cells across all 3 sessions), and matched neurons (cells detected in all 3 sessions) for the session types 
included in the study (Familiar, Novel, Novel+). d, 2-photon imaging session sequence for all mice (rows), highlighting the Familiar, Novel, and 
Novel+ sessions that were used for analysis (darker colors, see legend). Top, cohorts 1 & 3, mice trained with image set A (red), image set B 
(blue) is novel. Bottom, cohort 2, mice trained with image set B (blue), image set A (red) is novel. Symbols on y-axis indicate cell population 
labeled with GCaMP6f in each mouse; square: Excitatory, triangle: Sst Inhibitory, circle: Vip Inhibitory. Only active behavior sessions were 
included. Passive sessions (indicated with letter P) were interleaved among active behavior sessions but were not used in the primary analysis 
for this study (but see Extended Data Fig. 7a). Sessions selected for analysis include the last active behavior session with Familiar images (F), the 
first novel image session (N), and a subsequent novel image session (N+). 2-photon imaging sessions that did not pass quality control (QC) are 
indicated with an X. e, Behavior performance, quantified as the maximum d-prime value for each session, across Familiar, Novel, and Novel+ 
experience levels for each cohort, demonstrating that performance is consistent across familiar and novel images and does not depend on 
which set was used for training. Gray lines show individual mice. Colors indicate image sets and quantify the average +/- 95% confidence 
intervals across mice. Significance of differences across experience levels computed by a one-way ANOVA followed by Tukey HSD (p=0.05). f,
Response probability, during engaged periods, for each of the 64 possible image transitions for image set A (red) and image set B (blue) in the 
different cohorts of mice. Cohorts 1 & 3 were trained with image set A and cohort 2 was trained with image set B. Image pairs on x-axis are 
sorted by mean response probability. The image pairs with the highest detectability were selected for quantification of d-prime in Fig. 1d to 
facilitate comparison of behavior for similarly detectable images. 
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Extended Data Figure 3 – Across session cell matching

a

b c ed

Step 1 Step 2

Step 3

Extended Data Fig. 3 | Across session cell matching. a, Schematic of cell matching procedure. Average projection images from a 
pair of 2-photon imaging sessions are aligned to each other and the registration transform is applied to the segmented ROI masks
(step 1). A bi-partite graph matching algorithm is used to identify the best ROI match between the two sessions using intersection 
over union (IOU) of the ROI masks, and the inter-centroid distance with a maximum allowable distance of 10 pixels (step 2). Each
pair of sessions was registered and matched, and cell specimen IDs were unified across all pairwise matches (step 3). b, Example 
images of matched cells and average image responses in each of the 3 sessions. two example cells (columns) shown for each cell 
class (rows: Excitatory, Sst, Vip). c, Total number of cells detected in each session (Familiar, Novel, Novel +) and matched across 
all 3 sessions.  d, Number of cells detected in each session and matched across all sessions for each imaging plane (each point is 
one imaging plane). e, Fraction of cells matched for each pair of sessions for each cell class. Individual points are unique imaging 
planes.
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Extended Data Figure 4 – Average cell traces aligned to changes and omissions

a b
Image Changes Image Omissions

Extended Data Fig. 4 | Average cell traces aligned to changes and omissions. a, Average response aligned to image changes for 
each cell (y-axis) in a [-1.5, 2] second window (x-axis) relative to the time of the change. Rows correspond to each cell subclass 
(Excitatory, Sst, Vip), and columns correspond to experience levels (familiar, novel, novel+). Responses are quantified as event
magnitudes, in arbitrary units. b, Average response aligned to image omissions for each cell (y-axis) in a [-1.5, 2] second window 
(x-axis) relative to the time where the omitted stimulus would have been presented. Responses are quantified as event 
magnitudes, in arbitrary units. c, Population average change aligned activity, quantified using the timeseries of event magnitudes 
detected from calcium fluorescence signals. Population averages correspond to the average of all cells in panel a, split by 
experience level and cell class. d, Population average change aligned activity, quantified using normalized fluorescence values 
(dF/F, change in fluorescence over baseline). e, Population average omission aligned activity, quantified using the timeseries of 
event magnitudes detected from calcium fluorescence signals. Population averages correspond to the average of all cells in panel
a, split by experience level and cell class. f, Population average omission aligned activity, quantified using normalized fluorescence 
values (dF/F, change in fluorescence over baseline). Differences across experience levels are consistent across methods of signal 
quantification. 
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Population average calcium event magnitude Population average calcium event magnitude

Population average change in fluorescence over baseline (dF/F) Population average change in fluorescence over baseline (dF/F)

Single cell responses aligned to image changes Single cell responses aligned to image omissions
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Extended Data Figure 5. Decoding images and changes

a

b

Decoding image identity

Decoding image change

Extended Data Fig. 5 | Decoding image identities and image changes from image-aligned traces. A separate decoder was 
trained at each time point of the image-aligned traces to acquire a time course for the decoding analysis. Data shown for each 
experience level (red: familiar; blue: 1st novel session; purple: subsequent novel session), and each cell class (left: Excitatory; 
middle: Sst right: Vip). a, Decoding image identity using an 8-class classifier. Image-change-aligned traces for the 8 image types in 
each session were used in the analysis. A separate decoder was trained at each time point to classify the population activity as
one of the 8 images. Population activity contains information about image identity within a 100 ms after the image is presented.
This is the case in all classes, except for VIP neurons in the familiar and novel+ sessions. Note, the baseline is not exactly at the 
expected chance value (i.e. 1/8), because of the different number of trials per image. b, Decoding images changes from non-
changes using a binary classifier. For the non-change image, the image immediately before the image change was used. A 
separate decoder was trained at each time point. Decoder was trained to classify the population activity at each time point as 
image change or non-change. Image change aligned traces and non-change aligned traces represented the two classes in the 
decoder.
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Extended Data Figure 6. Decoding omissions and images after omissions

a

b

Decoding omissions

Decoding next image identity

Extended Data Fig. 6 | Decoding omissions and image identities from omission-aligned traces. a, Decoding analysis to classify 
activity from omissions vs. gray screen epochs. To get a time course for the decoding analysis, a separate decoder was trained on 
each time point of the omission-aligned traces. Decoders were trained to perform a binary classification of the population activity 
at each time point relative to the population activity at baseline. Baseline activity was determined from the time point 
immediately preceding the omission onset. VIP population activity showed was most informative about omissions in familiar 
sessions. Excitatory population activity contained weaker information about omissions. b, 8-class classification was performed to 
assess whether population activity at each time point following omissions contained information about the image identity 
following omissions. It was not possible to decode image identity from omissions in any of the cell populations. 
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Extended Data Figure 7  – Passive vs. active comparison and reverse image set controls
a

c

b

d e
Cohort 1 Cohort 2

Extended Data Fig. 7 | Passive vs. active comparison and reverse image set controls. a, Image change-aligned population average responses 
for each cell class, comparing active behavior (green) and passive viewing (purple) sessions with familiar images. In passive viewing sessions, 
the change detection task was played in open loop mode, with the lick spout retracted such that no reward was available. Mice were given 
their daily water allocation prior to the session so they were not thirsty and motivated. b, Omission aligned population average responses for 
each cell class, comparing active behavior (green) and passive viewing (purple) sessions with familiar images. VIP omission response does not 
depend on task performance. c, Schematic of cohorts of mice trained with different image sets. Cohort 1 was trained with image set A which 
became highly familiar, then tested with image set B as the novel set. Cohort 2 was trained with image set B which became highlight familiar, 
then tested with image set A as the novel set. All recordings for both cohorts were in VISp. d, Average response to image changes for each cell 
class (rows) and cohort (columns). Activity is measured as average event magnitude in a 500ms window after image changes, averaged over all 
neurons across mice in each cohort. Colors correspond to image sets as in panel c. Differences in activity between familiar and novel image sets 
are consistent between cohorts and do not depend on which image set was used for training. e, Average response to image omissions for each 
cell class (rows) and cohort (columns). Activity is measured as average event magnitude in a 750ms window after the time the omitted stimulus 
would have been presented, averaged over all neurons across mice in each cohort. Colors correspond to image sets as in panel c.

Cohort 1 Cohort 2
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Extended Data Figure 8. Average pupil, running and licking across experience

a c e

Extended Data Fig. 8 | Average pupil, running and licking across experience levels. a, Image change and image omission aligned 
running speed averaged across sessions for each experience level (Familiar, Novel, Novel +). b, Average running speed during 
image changes and image omissions across sessions for each transgenic mouse line (excitatory, Sst, Vip). Running speed was 
averaged over a 500ms window following image changes and a 750ms window aftere image omissions. Gray lines show individual 
mice, boxplots show distribution across mice. c, Average image change and image omission aligned lick rate averaged across 
sessions for each experience level. d, Average lick rate during image changes and image omissions across sessions. Lick rate was 
averaged over a 500ms window for image changes and a 750ms window for image omissions. Gray lines show individual mice, 
boxplots show distribution across mice. e, Average image change and image omission aligned pupil width averaged across 
sessions for each experience level. Pupil width during behavior performance is normalized to the average pupil width during the 
5-minute gray screen period prior to the start of the task. f, Average pupil width during image changes and image omissions 
across sessions. Pupil width was averaged over a 500ms window for image changes and a 750ms window for image omissions. 
Gray lines show individual mice, boxplots show distribution across mice. Significance of differences across experience levels 
computed by a one-way ANOVA followed by Tukey HSD (p=0.05).
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Extended Data Figure 9. GLM Validation

Extended Data Fig. 9 | GLM validation.  a, Illustration of kernel length and timing for each feature. Kernels for each of the 8 
images in each image set start at image onset (gray bands mark image presentations) and extend for 750ms. Kernels for licking
are aligned to each detected lick (black tick marks) and extend forward and backward in time 1s. Kernels for omissions are 
aligned to the time point when each image would have been presented (dashed blue line) and extend for 3s. Kernels for hits and 
misses are aligned to the onset of the change image (blue band marks change image presentation) and extend for 2.25s. Kernels
for running speed and pupil diameter are continuously convolved with the data timeseries and extend forward and backward in 
time 1s. b, Distribution of explained variance for each cell type split by experience level. The box shows the quartiles of each cell 
class and the whiskers mark +/- 1.5x Interquartile Range (Q3-Q1). Outliers are not shown for clarity. c, The explained variance of 
the GLM for each cell against the signal-to-noise ratio (SNR) of the neural activity trace. Here SNR is the mean of each cell’s df/f 
signal divided by its standard deviation. Lines show the best linear fit. d, Distribution of coding scores for each model feature, 
split by cell type. e, Distribution of coding scores computed by refitting reduced models with only a single feature. d,e, The box 
shows the quartiles of each cell class and the whiskers mark +/- 1.5x Interquartile Range (Q3-Q1). Outliers not shown for clarity.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2023. ; https://doi.org/10.1101/2023.02.14.528085doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.14.528085
http://creativecommons.org/licenses/by-nc-nd/4.0/


Extended Data Figure 10. Image and Omission kernels

Extended Data Fig. 10 | Image and omission kernels for all cells. a, Image kernels across experience. Top row, heatmap of 
learned image kernels for all cells. Cells are sorted by cell class, and then by image coding score. Second row, same as top row, 
but only cells with non-zero image coding scores. Third row, average image kernels split by experience level (colors) for each cell 
class (columns). Bottom row, average image kernels split by cell class (colors), for each experience level (columns). b, Omission 
kernels across experience. Top row, heatmap of learned omission kernels for all cells. Cells are sorted by cell class, and then by 
omission coding score. Second row, same as top row, but only cells with non-zero omission coding. Third row, average omission 
kernels split by and experience level (colors), for each cell class (columns). Bottom row, average omission kernels split by cell class 
(colors), for each experience level (columns).
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Extended Data Figure 11. Hit and Miss kernels

Extended Data Fig. 11 | Task kernels for all cells. a, Hit kernels across experience. Top row, heatmap of learned hits kernels for 
all cells. Cells are sorted by cell type, and then hits coding score. Second row, same as top row, but only cells with non-zero hit 
coding scores. Third row, Average hits kernels split by cell class and experience, for each cell class. Bottom row, average hits
kernels split by cell class and experience, for each experience level. b, Miss kernels across experience. Top row, heatmap of 
learned miss kernels for all cells. Cells are sorted by cell class, then by miss coding score. Second row, same as top row, but only 
cells with non-zero miss coding scores. Third row, average miss kernels split by cell class and experience, for each cell class.
Bottom row, average miss kernels split by cell type and experience, for each experience level.
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Extended Data Figure 12. Licking, pupil, and running kernels

Extended Data Fig. 12 | Behavior 
kernels for all cells. a, Lick kernels 
across experience. Top row, heatmap 
of learned lick kernels for all cells. Cells 
are sorted by cell type, and then by lick 
coding score. Second row, same as top 
row, but only cells with non-zero lick 
coding scores. Third row, average lick 
kernels split by experience level 
(colors), grouped by cell class 
(columns). Bottom row, average lick 
kernels split by cell class (colors), 
grouped by experience level (columns). 
b, Pupil diameter kernels across 
experience. Top row, heatmap of 
learned pupil diameter kernels for all 
cells. Cells are sorted by cell class, and 
then pupil diameter coding score. 
Second row, same as top row, but only 
cells with non-zero pupil diameter 
coding scores. Third row, average pupil 
diameter kernels split by experience 
level, (colors) grouped by cell class 
(columns). Bottom row, average pupil 
diameter kernels split by cell type 
(colors), grouped by experience level 
(columns). c, Running speed kernels 
across experience. Top row, heatmap 
of learned running speed kernels for all 
cells. Cells are sorted by cell type, and 
then by running speed coding score. 
Second row, same as top row, but only 
cells with non-zero running speed 
coding scores. Third row, average 
running speed kernels split by 
experience level (colors), grouped by 
cell class (columns). Bottom row, 
average running speed kernels split by 
cell type (colors), grouped by 
experience level (columns).
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Extended Data Figure 13. Additional details on coding scores

Extended Data Fig. 13 | Coding scores for all model features by experience. a, Same as Fig. 3e for all model features. Average 
coding score for each cell class (columns) by experience level and model component (rows). Colored points show all cells (mean 
+/- 95% CI). Connected gray lines show only cells matched across all experience levels. Differences between experience levels are 
marked as significant after a one-way ANOVA, followed by Tukey HSD (p = 0.05). Statistics were computed on all cells. b, Same as 
Fig. 3e with the addition of strictly matched cells that were matched across all experience levels including the last familiar 
session, and the first novel repeat. c, Same as Fig. 3e with the addition of cells that were matched across all experience levels and 
the GLM explained at least 5% of the cell’s variance on at least one session.
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Extended Data Figure 14. Coding scores by cortical depth and area

Extended Data Fig. 14 | Coding scores by cortical area and depth. a, Same as Fig. 3e, split by cortical depth within V1, a, Same as 
Fig. 3e, split by cortical depth within LM. a & b, Average coding score for each cell class (rows) by experience level and model 
component (rows) (mean +/- 95% CI, all cells). Differences between cortical depth are marked as significant with the result of a
two-sided independent sample t-test (p < 0.05). Cells were divided into upper and lower layers of the cortex using a dividing line 
of 250um below the cortical surface. c, Same as Fig. 3e split by cortical area. Average coding score for each cell class (rows) by 
experience level and model component (rows) (mean +/- 95% CI, all cells). Differences between cortical areas are marked as 
significant with the result of a two-sided independent sample t-test (p < 0.05).
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Extended Data Figure 15 – Clustering methods

Extended Data Fig. 15 | Clustering methods. a, Schematic of clustering steps. Spectral clustering is used to cluster vectorized 
coding scores for each cell class separately. b, Co-clustering probability matrices for three cell classes used for final assignment of 
cluster IDs. Darker color indicates higher probability of cells belonging to the same cluster after 150 iterations. c, Top row, 
eigengap values for three cell classes, excitatory, Sst, Vip, used to choose optimal number of clusters. Gray dashed lines indicate 
number of clusters identified for each cell class. Bottom row, gap statistic value for all cell classes. d, UMAP representation of 
functional clusters for three cell classes. Colors represent distinct clusters. e, Bar plot representing number of clusters that were 
identified across mice. Multiple clusters were identified in mouse animal, and no one mouse contributed to only one cluster, 
indicating that functional clusters are not mouse specific. f, Bar plot showing number of mice that contributed to each functional 
cluster demonstrating that each cluster was comprised of cells from multiple mice. g, Within cluster correlation of individual cell 
coding scores with the mean coding score for each cluster. 
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Extended Data Figure 16 – Average coding scores for all clusters and layer distributions.

Extended Data Fig. 16 | Average coding scores for all clusters and layer distributions. a, Functional clusters for Excitatory cells. 
Top row, mean coding scores for each cluster, organized as feature category (rows) by experience level (columns), darker colors 
indicate higher coding scores. Second row, omission aligned population average across neurons belonging to each cluster plotted 
by experience level (familiar in red, novel in blue, novel+ re-exposure in purple). Gray bars indicate image presentations, blue
dotted line indicates time of stimulus omission. Third row, proportion of cells in each visual area (VISp – primary visual cortex, 
VISl – lateromedial area), relative to the proportion of cells in that cluster. Bottom row, proportion of cells in each cluster cortical 
depth (upper <= 250 µm, lower > 250 µm), relative to the proportion of cells in that cluster. Differences in proportions are 
marked as significant with the result of a chi-squared test with Benjamini-Hochberg multiple comparison correction (p < 0.05). b,
Same as a, for Vip Inhibitory clusters. c, Same as A for Sst Inhibitory clusters. d, Same as Fig 4g, for Vip Inhibitory and Sst 
Inhibitory subclasses. Proportion of cells in each combination of visual area and cortical depth for each cluster, relative to the 
proportion of cells in that cluster (Chi-squared test, followed by Benjamini-Hochberg correction). 
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Extended Data Figure 17 – Functional clusters are not random.

Extended Data Fig. 17 | Functional clusters are not random. Shuffling cell ids across experience levels alters the size of novelty 
coding clusters. a, Schematic of shuffle procedure. Cell IDs were shuffled across days (experience levels) without disruption of 
coding scores for different regressors within each cell, resulting in data distributions identical to the original dataset. b, Top row, 
average coding scores of cells after shuffling experience levels and matching to the original clusters for Sst Inhibitory cells. No 
heatmap is shown if no cells were matched across all shuffle iterations. See panel e for matching procedure. Bottom row, 
difference in size (# of neurons) of original cluster relative to matched shuffled cluster, demonstrating that some cluster patterns 
are more prevalent in the real data compared to shuffled data. c, Same as panel b but for Excitatory cells. d, Same as B but for Vip 
Inhibitory cells. e, Mean sum-of-squared-error (SSE) values comparing shuffled clusters (rows) to original clusters (columns). 
Rows with no values indicate that no shuffled clusters were found to match the original clusters. 
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Extended figure 18 – Clustering of familiar sessions.

a

b  

c

Extended Data Fig. 18 | Clustering results using three sequential sessions with familiar images. Clustering on familiar 
sessions results in fewer clusters with more consistent coding across days compared to novelty clusters. a, Schematic showing 
which sessions were used for clustering. b, The optimal number of clusters identified using eigengap values (see Methods). b,
Average coding scores of clusters for familiar sessions, organized by feature category (Images, Omissions, Behavioral, Task) and
experience level (Familiar, Novel, Novel+) for each cell class. The largest excitatory and Vip clusters were non-coding 
(excitatory familiar cluster 1, 50% of all excitatory cells; Vip familiar cluster 1, 40% of all Vip cells). The second largest excitatory 
cluster encoded images across all 3 familiar sessions (excitatory familiar cluster 2, 19.6% of all excitatory cells) and the second 
largest Vip cluster encoded omissions across all 3 familiar sessions (Vip familiar cluster 2, 14.5% of all Vip cells). Sst clusters 
derived from clustering on familiar sessions alone also showed a high degree of consistency across sessions, with both cluster 1
(55.7% of all Sst cells) and cluster 2 (30.9% of Sst cells) encoding images in all 3 sessions. 
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Extended Data Table 1 – Author contributions table using CRediT taxonomy

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2023. ; https://doi.org/10.1101/2023.02.14.528085doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.14.528085
http://creativecommons.org/licenses/by-nc-nd/4.0/

