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ABSTRACT

Information is processed by networks of neurons in the brain. On the timescale of sensory processing,1

those neuronal networks have relatively fixed anatomical connectivity, while functional connectivity,2

which defines the interactions between neurons, can vary depending on the ongoing activity of the3

neurons within the network. We thus hypothesized that different types of stimuli, which drive different4

neuronal activities in the network, could lead those networks to display stimulus-dependent functional5

connectivity patterns. To test this hypothesis, we analyzed electrophysiological data from the Allen6

Brain Observatory, which utilized Neuropixels probes to simultaneously record stimulus-evoked7

activity from hundreds of neurons across 6 different regions of mouse visual cortex. The recordings8

had single-cell resolution and high temporal fidelity, enabling us to determine fine-scale functional9

connectivity. Comparing the functional connectivity patterns observed when different stimuli were10

presented to the mice, we made several nontrivial observations. First, while the frequencies of11

different connectivity motifs (i.e., the patterns of connectivity between triplets of neurons) were12

preserved across stimuli, the identities of the neurons within those motifs changed. This means13

that functional connectivity dynamically changes along with the input stimulus, but does so in a14

way that preserves the motif frequencies. Secondly, we found that the degree to which functional15

modules are contained within a single brain region (as opposed to being distributed between regions)16

increases with increasing stimulus complexity. This suggests a mechanism for how the brain could17

dynamically alter its computations based on its inputs. Altogether, our work reveals unexpected18

stimulus-dependence to the way groups of neurons interact to process incoming sensory information.19

1 Introduction20

Visual information is processed by networks of neurons spanning multiple regions of the neocortex. The interactions21

between these neurons determine the sensory information extracted by the brain and used to guide behavior. For this22

reason, much prior work has investigated properties of the networks that define the interactions between neurons in23

visual cortex. For example, some work has focused on the patterns of anatomical connectivity between individual24

neurons [1, 2, 3, 4], or between larger voxels of cortical tissue [5, 6, 7, 8]. At the same time, functional connectivity25

networks – which describe the interactions between neurons – can differ substantially from anatomical networks26

[9, 10, 11]. Notably, while anatomical connectivity is relatively fixed on the timescale of sensory processing, functional27

connectivity can vary as the neurons within the network adapt quickly to different stimuli [12]. This motivated us28

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.03.547364doi: bioRxiv preprint 

https://orcid.org/0000-0001-8325-4644
https://orcid.org/0000-0002-8208-5698
https://orcid.org/0000-0001-5484-9331
https://orcid.org/0000-0002-8192-1121
https://doi.org/10.1101/2023.07.03.547364
http://creativecommons.org/licenses/by-nc-nd/4.0/


STIMULUS-DEPENDENT FUNCTIONAL NETWORK TOPOLOGY IN MOUSE VISUAL CORTEX

to ask whether and how different stimuli might engage different functional networks with single-neuron resolution29

within the visual cortex. Despite the clear importance of this question for understanding visual processing, and the30

substantial literature on functional and anatomical neural network structures (reviewed below), we are unaware of any31

prior work that addressed how the topological structure of functional connectivity networks between individual neurons32

spanning multiple regions varies as the stimulus changes. To fill this knowledge gap, we applied network analyses to33

simultaneous recordings from hundreds of neurons in mouse visual cortex. Our results indicate a surprising degree of34

stimulus-dependence to the topological structure of functional networks between individual neurons in visual cortex.35

Previous work investigated anatomical connectivity between cortical neurons and regions using electron microscopy36

[13, 4], paired intracellular electrophysiology recordings [1, 2], viral tracing [5, 14], and diffusion tensor imaging37

[15]. These studies revealed many interesting features of anatomical neuronal connectivity networks, like their38

modular organization and small-worldness [14, 16, 5, 17], and their hierarchical structure [14]. While anatomical39

connectivity (e.g., synaptic connections between neurons) remains relatively static over the timescale of processing40

visual inputs, functional connectivity can be much more dynamic, thus motivating efforts to understand the relation41

between functional and anatomical connectivity [18, 19, 11, 7, 20]. These efforts are complicated by the fact that42

different types of stimuli lead to different dynamical patterns of neural activity and to different degrees of correlation43

between neurons [21, 22, 23, 24, 25]. Because functional connectivity depends on these properties – e.g., on the44

time-lagged correlation between the activities of neuron pairs [26, 27] – the functional connectivity can depend on the45

stimulus presented in the experiment.46

Despite this potential complication, stimulus- and task-related functional connectivity patterns obtained at a coarse47

scale using non-invasive functional magnetic resonance imaging (fMRI) have been reported to resemble resting-state48

functional connectivity patterns [28, 29, 30], while resting-state connectivity in turn resembles anatomical connectivity49

patterns [31]. In other reports – again, derived from fMRI experiments – stimulus-evoked functional interactions were50

found to vary with tasks or cognitive states [32, 33, 34, 35, 36]. These fMRI studies raised the important question of51

whether and how the functional connectivity of the underlying neuronal networks (i.e., at a finer single-neuron scale)52

might change with stimulus or task conditions.53

Functional connectivity at this finer scale is less well-studied due to challenges in simultaneous recordings from54

large populations of neurons with high spatial and temporal resolution. Despite these limitations, prior work has55

shown that functional connectivity: 1) is much more stimulus-dependent for high-frequency oscillatory activity than for56

low-frequency [37]; 2) varies by cell type with the cortex [38]; 3) depends on the contrast of a visual stimulus [39]; and57

4) reflects the existence of two main groups of neurons, one whose activities follow those of the rest of the population,58

and one whose activities do not [24]. While these studies have revealed much about the stimulus-dependence of59

functional networks at single-neuron resolution, they have not included detailed analyses of networks spanning multiple60

brain regions. On the other hand, the previous reports of network analysis applied to single-neuron resolution functional61

connectivity networks, focused on responses mainly to drifting grating stimulus with spontaneous activity as a baseline62

comparison [26, 27], thus precluding an assessment of stimulus-dependent network structure. Therefore, it is still63

unclear whether and how the topological organization of these functional networks (either within a brain region, or64

spanning multiple regions) depends on stimulus properties or other context-defining variables [40].65

To fill this gap, we used network analysis methods (similar to those of [26, 27]) to analyze the functional connectivity66

networks measured in response to 6 different types of stimuli, of varying degrees of complexity, ranging from full-field67

flashes up to natural movies. These networks were obtained from the simultaneously recorded activities of hundreds of68

neurons in 6 different cortical regions with implanted Neuropixels probes [26]. Thus, we were able to identify functional69

networks for each stimulus type, which spanned multiple brain regions. Note that to focus on between-stimulus analyses,70

we constructed one network based on all conditions for each stimulus, hence the functional networks embody total71

correlations rather than signal or noise correlations. By studying the structures of these networks and how they varied72

with stimulus type, we identified several surprising features of the functional networks. First, while the distribution73

of different types of 3-neuron connectivity motifs were quite similar for the different stimuli, the specific identities74

of the neurons within those motifs depended on the stimulus. This means that the cortical network is dynamically75

reorganized as the stimulus changes, but does so in a manner that preserves the motif frequencies. This finding points to76

a potentially fundamental role for these motif distributions in maintaining the function of the cortical networks [41, 42].77

Secondly, we identified highly-interacting modules [43, 44] and found that these modules were much more localized78

to a single brain region (as opposed to being distributed between regions) for stimuli with higher complexity, such as79

natural movies. Our results thus reveal distinct stimulus-dependent topology of cortical functional networks, and imply80

a key organizational principle underlying that stimulus-dependence: preserved relative motif frequencies.81
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2 Results82

To determine whether and how visual cortical functional connectivity networks depend on the stimulus presented83

to the animal, we analyzed data from Neuropixels probes inserted into six visual regions of mouse cortex (Fig. 1A:84

V1, LM, RL, AL, PM, AM), which is previously released by Allen Institute [26]. These probes simultaneously85

recorded neural activity from each of these six regions while the mice were presented with visual stimuli of varying86

degrees of complexity (Fig. 1B): flashes, drifting gratings, static gratings, natural scenes and movies, and gray screen87

(approximation for resting state, or spontaneous activity). From the responses to each stimulus, we extracted the88

directed functional connectivity using cross-correlograms (CCGs) between the spiking responses of pairs of neurons89

(Fig. 1C). In order to take polysynaptic connections into consideration [45], we examined ‘sharp intervals’ instead of90

the ‘sharp peaks’ that might be used to identify monosynaptic connections[46, 47, 26]. These sharp intervals were91

defined to have a short latency and potentially multiple time lags, and were detected by searching for statistically92

significantly outlying values in the CCG. Identification of bidirectional connections was made possible by limiting lag93

τ to be non-negative, and each significant connection was defined as excitatory or inhibitory depending on the sign94

of the significantly outlying CCG value (see Fig. 1C and Methods), similar to the definition used in previous work95

[48]. Intuitively, if the spiking of the source neuron is statistically strongly correlated with the firing or non-firing of the96

target neuron with a short time lag, then there exists an excitatory or inhibitory functional connection between them.97

To obtain a comprehensive understanding of the stimulus-dependent structure of the functional connectivity networks98

(Fig. 1D), we conducted network analyses at multiple topological scales, ranging from the properties of pairwise99

connections to the local connectivity patterns of third-order functional motifs, up to larger-scale functional modules.100

Our control analysis on running speed (not shown) showed that our subsequent observations are indeed determined by101

the stimulus and not by locomotion.102

2.1 Stimulus dependency of functional connectivity networks103

We first investigated overall patterns of functional connections between neurons across stimulus types by comparing the104

functional connectivity matrices. We found there are some common network features observed across stimulus types.105

Specifically, the functional networks observed during all visual stimuli exhibited heavy-tailed degree distributions106

(Supplementary Fig. 1B). Networks with this property are known to be robust to random failures [49], however, they107

are more vulnerable to targeted attacks on hub neurons which could lead to reduced network efficiency as observed in108

Alzheimer’s patients [50, 51].109

While functional networks show some shared characteristics like heavy-tailed degree distributions across stimuli,110

we also observed network properties vary with stimulus complexity. We found that natural stimuli (natural scenes and111

movies) tended to evoke fewer functional connections than grating stimuli (both static and drifting gratings) while112

full field flashes drive the least correlated neural activities, on the same level as resting state activity (Fig. 1E). These113

findings are consistent with previous reports that natural stimuli decorrelate neurons in primary visual cortex (V1)114

[52, 53]. While these previous works focus on V1, our results suggest that decorrelation by natural stimuli is a general115

property of cortical circuits: it is found in higher visual cortical areas as well.116

The differences in network density mainly originate from differences in excitatory connections (Fig. 1E), which117

results in the strong correlation between the fraction of excitatory connections and the network density (Fig. 1F, middle).118

Even though natural stimuli do not evoke the densest functional networks, the fraction of within-area connections is119

largest for static gratings and natural stimuli (Fig. 1F, left, and Supplementary Fig. 1A; p < 10−3, Kolmogorov-Smirnov120

test). This is closely related to the stimulus-dependent differences in modular network structure, which we analyzed in121

more details later in this paper.122

To determine how the stimulus-dependence of the network density affects the network’s topological structure, we123

measured the tendency for triplets of neurons to form closed triangles (e.g., three-neuron motifs 6,9-13 in Fig. 2B).124

This tendency is quantified by the clustering coefficient, and we found that it increases with increasing network density125

regardless of stimulus type (Fig. 1F, right).126

Motivated by previous work showing that neurons with similar preferences tend to connect with each other [2, 4, 54],127

we compared the tuning similarity of neuronal pairs connected with excitatory and inhibitory connections. To perform128

this comparison, we computed the kernel density estimation (KDE) for signal correlation during presentation of four129

visual stimulus types. Signal correlation is defined as the correlation between average responses of neurons to different130

stimulus conditions which is used to test whether two neurons have similar tuning curves [21, 55]. We computed131

these signal correlation separately for pairs with excitatory connections, inhibitory connections, and those with no132

connections (Fig. 1G). For natural movies, we regarded each frame as a different stimulus condition when computing133

the signal correlation [2]. Since there are only two conditions for flashes (dark or light), the signal correlation of either 1134
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or -1 could be trivial and thus is not considered in this analysis. Similarly, the signal correlation is ill-defined for the135

blank gray screen stimulus, and thus it was also omitted from this analysis.136

For all visual stimuli, the signal correlations for connected neuron pairs tended to be larger than for disconnected137

pairs, which had distributions centered around zero (Fig. 1G; p < 10−144, rank-sum test). Additionally, neurons with138

excitatory connections tended to have higher signal correlations than did pairs with inhibitory connections (Fig. 1G;139

p < 10−3, rank-sum test).140

In agreement with the previous findings that neurons close in space or sharing similar tuning curves are more likely141

to have synaptic connections [54, 2], we found the probability of functional connections decreases with increasing142

distance and increases with their increasing signal correlation (Supplementary Fig. 2A,B; Cochran-Armitage test). In143

addition, the probability of a functional connection being excitatory/inhibitory significantly increased/decreased with144

signal correlation during all visual stimuli (Supplementary Fig. 2C,D; Cochran-Armitage test), indicating that even145

though neurons with similar preferences generally tend to be connected, the sign of the connection depends on the146

extent of their tuning similarity.147

Collectively, these analyses show that network density, fraction of connections that are within a brain region (as148

opposed to between regions), clustering coefficient, and the distribution of signal correlation, depend systematically on149

the stimulus type.150

2.2 Stimulus dependency of functional connectivity motifs151

Having observed stimulus-dependency of the general network properties, we next turned our attention to the properties152

of the functional motifs. Specifically, we investigated two- and three-node motifs in the functional connectivity network.153

Similar to anatomically-defined structural motifs which form fundamental building blocks of neural circuits [56, 1, 57],154

functional motifs, which are defined by correlated neural activities, represent elementary information processing155

components of a functional network [58].156

To understand the distribution of two- and three-neuron motifs in each functional network, we adopted the intensity157

method for functional motif detection. This method computes the Z-score of the intensity for a given motif by comparing158

the motif frequency in the empirical network and in a randomly-generated surrogate network [59]. This method thus159

identifies how much more (or less) prevalent the motif is in the real network than would be expected by chance in a160

reference network randomly shuffled with certain preserved properties (e.g., density, degree distribution, etc).161

Note that, to characterize pairwise signed connections (i.e. signed two-neuron motifs), it is necessary to preserve162

the edge sign distribution when generating density-matched randomized surrogate networks[60]. For this reason, we163

included edge signs in the pair-preserving model [56] that preserves the distribution of (n-1)-neuron motifs and used the164

resultant Signed-pair-preserving model to generate the surrogate network with the preserved signed (n-1)-neuron motifs165

for comparing the motif frequency between the true network and the randomly-generated one.166

As for two-neuron motifs, we found that bidirectional signed functional connections are much more frequent than167

would be expected by chance in the random network (Fig. 2A). This recapitulates the structural observations that168

bidirectional synaptic connections are highly over-represented in cortex relative to density-matched random networks169

[1].170

We further studied distributions of three-neuron motifs in functional networks. There are 13 types of connected171

three-neuron motifs (Fig. 2B), of which the Feedforward Loop (FFL) is arguably the most studied type due to its172

ubiquitous nature in empirical networks such as gene systems and neuronal networks [61]. The lollipop plot in Fig. 2C173

shows the intensity Z score obtained using the above intensity method for all types of signed three-neuron motifs ordered174

by their corresponding unsigned motif types. The colors in the plot represent each unsigned type (see Supplementary175

Fig. 4 for the full set of signed connectivity patterns). Interestingly, the most salient motifs were the same for the176

different visual stimuli. Specifically, the top six over-represented motifs are the same for different stimuli being tested177

here (Fig. 2C, motif ID = e6, e9, e10, e11, e12, e13). In addition to these significantly over-represented motifs,178

the same three types of motifs were significantly under-represented for all stimuli (ID = e4, e5, e8). Interestingly,179

all 6 over-represented motifs contain at least one excitatory FFL (eFFL) structure (ID = e6, Fig. 2C) with the only180

difference among them being the number of mutual connections that accompany the eFFL structure. The last five of181

these over-represented motifs were studied without edge signs in previous works as ‘mixed-feedforward-feedback loops’182

and have been found to be correlated to memory, as well as acceleration and delay of response [62]. Here we denote all183

six of the over-represented signed motifs as excitatory-feedforward-loop-based (eFFLb) motifs.184

In addition to the three highly under-represented motifs (ID = e4, e5, e8), the set of under-represented motif patterns185

consists largely of ‘unclosed’ eFFLb motifs, suggesting that neurons tend to form pairwise-connected triplets. This186

under-representation of unclosed motifs appears to be more pronounced with higher network density. Interestingly, the187
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motifs’ average absolute intensity Z scores (deviation from the frequency expected by chance) increases significantly188

with increasing network density (Fig. 3A). With more connections, the empirical functional network deviates more189

strongly from randomized surrogate networks, highlighting the fundamental non-randomness of local functional190

connectivity.191

Note that it is important to examine the whole significance distribution of motifs instead of focusing on merely the192

most striking ones. Varying the threshold on significant motifs naturally changes their total count, but importantly, it193

does not substantially change the relationship between the functional connectivity patterns observed for the different194

stimuli (Supplementary Fig. 5B). Our control analysis has led us to the conclusion that the presence of non-random195

local topology of functional networks is contingent upon the density of the network(Fig. 3A,B), which is, in turn,196

modulated by sensory input (Fig. 1E). Meanwhile, the same sets of two- and three-neuron connectivity motifs are over-197

and under-represented for all 6 visual stimuli.198

Our analysis of the connectivity motifs relies on comparing motif frequencies in the observed network to those199

reference networks that are similar in some way to the observed network but are otherwise randomized. Notably,200

there are many different ways to define random networks by preserving certain network properties. For example, the201

commonly used Erdős-Rényi reference network preserves the network density. Other reference models can preserve the202

degree distribution, the neuron pair distribution, or the signed neuron pair distribution (see Methods). To understand203

how our motif analysis depends on the choice of reference model, we computed the three-neuron motif intensities for204

the natural movies stimulus for 4 different reference models with increasingly more preserved network properties (from205

left to right in Fig. 3F). As a result, the overall significance level for all motif types roughly decreases in the same order,206

and the most strictly conserved reference model, the signed pair-preserving reference model, is better in identifying207

the small subset of motifs for which the observed network is most truly non-random. Therefore, we use the signed208

pair-preserving reference model as our default reference model throughout this study.209

To test the robustness of our results, we separately calculated the motif distribution patterns on distinct halves of the210

trials from our natural scene stimulus data. The high consistency between the motif distributions on the two data splits211

(Fig.S11) suggests that noise within the dataset is unlikely to be a key factor in our results. Moreover, eFFLb motifs212

remain to be the most salient motifs across different stimuli on various significance levels (Fig.S12). Taken together,213

eFFLb motifs seem to be reliably the most significant patterns among three-neuron subgraphs.214

2.3 Properties of over-represented three-neuron motifs215

While the three-neuron functional connectivity motifs that were most over- or under-represented were the same for216

all stimuli (Fig. 3B), those motifs were composed of different neurons for different stimuli (Fig. 3D,E). Specifically,217

while most eFFLb motifs contained at least one neuron from V1, the fraction containing all 3 neurons within V1 varied218

substantially as the stimulus changed. (Fig. 3D).219

To further quantify the extent to which the same neurons constitute eFFLb motifs across stimuli, we computed220

the number of eFFLb motifs sharing exactly the same neurons for all pairs of stimuli (intersection sizes), as shown in221

Fig. 3E for one example over-represented eFFLb motif (ID=e6; results for all of the over-represented eFFLb motifs222

are shown in Supplementary Fig. 6). We also compared motif overlapping detected using half the trials of the same223

stimulus and using different stimuli (Supplementary Fig. 11). Notably, eFFLb motifs were more likely to be composed224

of the same neurons during the same stimulus than for different stimuli, indicating that the identities of the neurons225

within the over-represented motifs change as the stimulus changes.226

Taken together, these results and those in Fig. 2C, indicate that, as the stimulus changes, the same three-neuron227

motifs are over- or under-represented in the cortical networks, but the identities of the neurons within those motifs228

change. This suggests that these specific motifs might have strong functional importance for the cortical microcircuit229

because even as different stimuli dynamically alter the functional connectivity, they do so in a way that preserves these230

motif patterns.231

The fact that the eFFLb motifs were over-represented for all stimuli even with different constituent neurons232

suggested that they might play an important role for the cortical microcircuit. To further investigate this question, we233

analyzed the tuning similarity of these motifs. We found the signal correlation between pairs of connected neurons234

within the same eFFLb motif were significantly higher than those not within the same eFFLb motif (Fig. 3C; ∗p < 0.05,235

∗ ∗ ∗ ∗ p < 0.0001, Student’s t-test), and neurons within the same eFFLb motif are spatially closer to each other than236

otherwise (Supplementary Fig. 5A, right; ∗ ∗ ∗ ∗ p < 10−4, Student’s t-test). Furthermore, neuron pairs within eFFLb237

motifs show stronger functional connection strengths and higher CCG Z-scores than other connected neuron pairs238

(Supplementary Fig. 5A; ∗ ∗ ∗ ∗ p < 10−4, Student’s t-test). Thus, the eFFLb motifs tend to consist of functionally-239

similar neurons. These observations are consistent with previous reports of synaptic connectivity patterns in visual240

cortex [1].241
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Overall, these analyses indicate that neuron pairs within the over-represented eFFLb motifs tend to be spatially near242

each other, and to have higher functional similarity compared to other pairs. Coupled with the fact that these eFFLb243

motifs are preserved across stimuli, this highlights the potential functional importance of these motifs within the cortical244

microcircuit.245

2.4 Spatial and functional organization of network modules depends on the stimulus246

Having identified the fundamental motif structures as computational building blocks regardless of stimulus types, we247

next asked how the topology of larger groups of neurons, or modules, depends on stimulus properties. Those modules248

[63, 64] are thought to impart added robustness [65], efficiency [66], and functional specialization [44] to networks. We249

thus sought to identify modules within our networks, and to determine how their properties depend on the stimulus250

presented to the animal.251

To achieve this goal, we revised the Louvain method [67] to optimize the Modularity estimation from previous252

work [68, 69] so as to take into account the signs of the connections in our networks: this modified Louvain method253

searched for sets of modules with many excitatory connections inside the same module and inhibitory connections254

between different modules (see Methods). Thus, the method identifies sets of modules whose neurons are internally255

correlated and externally anti- or un-correlated. This greedy optimization yields the groupings of neurons into modules256

by maximizing the score of modified Modularity (see Methods). For comparison, we also identified modules with257

the original Modularity algorithm that does not take into account the edge signs [65]. Although our adapted method258

revealed results qualitatively similar to the original one (Supplementary Fig. 10), the identified module size using our259

method is relatively smaller, suggesting a finer scale module detection with our method.260

Unless otherwise stated, in the rest of this paper Modularity means the modified Modularity for signed module261

detection. By maximizing the two-dimensional Modularity difference map whose dimensions correspond to resolution262

parameters for excitatory and inhibitory links, we determined the optimal resolution parameters that control the scale of263

identified modular structure so that the empirical network deviates most from the null model [70, 14] (see Methods;264

Supplementary Fig. 7A). In light of the potential limitations posed by a fixed resolution parameter, we analyzed265

multi-resolution module partitioning and found consistent results (Supplementary Fig. 7B,C,D).266

After identifying the best parameters, we applied our module detection algorithm to the observed functional267

networks from each stimulus, and compared the results between stimuli. During gratings and natural stimuli, functional268

networks tend to exhibit stronger modular structures, characterized by larger deviations in Modularity from expectation269

(Fig. 4A, bottom z-score, 53.94± 8.81). On the contrary, the networks obtained from flashes and in the resting state270

were less modular (6.22± 4.44; p = 3.4× 10−9, rank-sum test).271

Anatomically parcellated brain regions are thought to work as natural modules with specialized functions [71, 72,272

73, 74]. We thus wanted to understand how our functionally-defined modules relate to the anatomically-defined brain273

regions. To achieve this goal, we analyzed the identified functional modules to understand the extent to which their274

spatial organization coincided with the anatomically-defined brain regions, and the extent to which that depended on275

the stimulus. To do this, we computed three measures from the modules for each stimulus (Fig. 4B, left). First, the276

coverage quantifies the maximum extent to which a given module covers all of the neurons in any single brain region.277

Second, the purity quantifies the maximum extent to which a given module is contained within any single brain region.278

These two quantities are computed for each module, and the results in Fig. 4 show their weighted average (averaged279

over modules, weighted by module size). A more detailed module-by-module analysis is presented in Fig. 5, below.280

Finally, the adjusted rand index (ARI) quantifies the similarity between how the modules partition the set of neurons,281

and how the brain regions partition the set of neurons. Intuitively, these measures revealed the properties of modular282

structure from different perspectives: high coverage means at least one visual area is covered by the module, high purity283

means that a module consists of neurons from the same visual area, and high ARI means the overall module partitioning284

highly resembles the areal organization.285

These three measures all show variation in the module organization for different stimuli (Fig. 4C). For natural286

images and movies, the modules have a higher propensity to cover only a subset of a brain region than for drifting and287

static grating stimuli. This is reflected by lower coverage scores and higher purity scores for the natural image and288

movie networks than for the drifting and static grating networks (Fig. 4C; p < 10−310, p < 10−310, rank-sum test).289

It is important to note that with increasing module size, coverage tends to increase while purity tends to decrease,290

and the module size does depend on the stimulus (Fig. 5B). As a result, it is important to ask whether the variations in291

coverage and purity with visual stimuli could be explained simply by stimulus dependence of module size. To address292

this question, we compared module purity and coverage to module size (Supplementary Fig. 8). Consistently across293

module sizes, the modules in the flashes stimulus and resting state networks had lower coverage than did the networks294

for the other stimuli. The network from the flashes stimulus also had consistently lower purity.295
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To further probe the relationships between module sizes and coverage or purity, we analyzed the number of modules296

obtained for each stimulus that were above a given threshold of module size, threshold of module coverage, or threshold297

of module purity. Repeating this for many threshold values (Fig. 5B), we found that natural images and movies had the298

largest numbers of high-purity modules even though their numbers of small modules were not appreciably different299

from the other stimuli. These findings emphasize that the stimulus-dependent module properties we report in Fig. 4C300

cannot entirely be attributed to stimulus-dependent module sizes.301

In general, the similarity between functional module partitioning and the anatomical areal organization is higher302

during gratings and natural stimuli and lower during resting state and flashes (p < 10−310, rank-sum test), suggesting303

that functional connectivity tends to be more constrained by the anatomical structure and more spatially compact during304

complex and natural stimuli. This is reflected in the lower ARI values for the flashes and spontaneous activity (Fig. 4C;305

p < 10−310, rank-sum test).306

Consistent with previous work [58, 75], functional motifs seem to be more pronounced in more modular networks307

(Supplementary Fig. 9 F), suggesting their shared organizational principles. Similar to motifs, we also tested the308

functional similarity of nodes within and across modules by measuring the signal correlations of connected neuron309

pairs. Neuron pairs within the same module had higher signal correlations than did neuron pairs in different modules310

(Fig. 5A), and the probability of any two connected neurons being in the same module also increases with increasing311

signal correlation (Supplementary Fig. 9A; Cochran-Armitage test). These findings were consistent for the 4 visual312

stimuli for which the signal correlations are well-defined, and were consistent across brain regions when modules were313

assigned to the brain region from which most of their neurons came (Fig. 5D,E). These observations emphasize that the314

modular structure promotes functional specialization [44].315

Our analyses of the modular organization of the functional connectivity networks reveal that the modules tend to316

contain neurons with similar stimulus tuning, and that their spatial organization and alignment with anatomical brain317

regions depend on the stimulus presented to the animal. This emphasizes that a functional module is not strictly the318

same as an anatomical brain region: the relationship between these concepts depends on the stimulus-defined context.319

3 Discussion320

We studied the topology of micro-scale functional networks measured with single-neuron spiking activity in the mouse321

visual cortex. These data were collected while the mice were exposed to different types of visual stimuli, and we322

separately analyzed the functional networks observed in the responses to each stimulus type. Thus generated functional323

networks could differ from the underlying anatomical connectivity, and this disparity warrants caution when interpreting324

the connectivity graphs. However, our science question, concerning stimulus-dependent interactions between neurons325

cannot be answered with the standard anatomical connection methods. For this reason, we used functional connectivity326

measures for this study.327

We found that functional networks display stimulus-dependent network properties such as varying density, clustering328

coefficient and fraction of excitatory connections. Furthermore, we provide evidence that the distribution of low-order329

connectivity patterns (motifs with 2 or 3 nodes) remains stable, characterized by over-representation of a specific330

group of 3-neuron motifs, eFFLb motifs. This over-representation was preserved across the wide range of stimuli we331

investigated. Notably, while this motif was over-represented in all cases, the constituent neurons within that motif332

changed. Finally, we observed that the module-level network architecture depends significantly on the stimulus.333

The consistent over-representation of eFFLb motifs suggests that they are key information-processing components334

of neural circuits. While these motifs were over-represented for all stimuli, the identity and areal distribution of neurons335

constituting the eFFLb motifs differed between stimuli. Thus it is the three-neuron patterns rather than the triadic336

interactions of specific neurons that are preserved. This observation suggests that an important computational role337

might arise at the motif level[76, 77, 78, 79, 80], where neurons can dynamically reorganize to form these relevant338

structures. These local computations, organized by motifs, could remain robust to changes like the loss of individual339

neurons because other neurons could be recruited into the motifs to replace any that are lost. For this reason, motif-level340

computational organization could provide substantial robustness to cortical computation.341

The abundance of FFL motifs has been observed in numerous types of networks including gene regulatory networks342

[61], transportation networks [81], engineered networks [56] and neuronal networks[1, 56, 81]. Motif ID = e6 (FFL) is343

proven to be a sign-sensitive filter that responds only to persistent stimuli in transcriptional regulation networks [61]344

and multi-input FFL generalization is found to store memory as well as reject transient input fluctuations in neuronal345

networks [41]. For anatomical networks of neurons, there have been modeling works showing that certain eFFLb motifs346

(e9, e10) can function as long-term memories of the input, thus playing an important role in most cognitive tasks [62].347
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Therefore, the eFFLb motifs that we found to be consistently over-represented in cortical functional networks may have348

important functional roles in cortical computation.349

On the global scale, however, more complex visual stimuli tend to drive networks into more modular structures350

with stronger segregation and stronger agreement between structural and functional parcellation. This suggests that351

functional modules with more spatially segregated structure could be required in more demanding cognitive tasks.352

Nevertheless, major functional modules observed when the animal was viewing natural scenes and movies are highly353

overlapping at all spatial scales with almost the same neurons. These probably arise from the common subtasks required354

by the visual processing of similar stimuli. One advantage of having shared modular components is that it allows a355

faster adaptation and possibly a lower switching cost of functional networks to various tasks [75]. This reduction in356

functional reorganization costs could be especially important given our observation that different neurons are organized357

into the over-represented eFFLb motifs in the presence of different stimuli.358

Anatomical structure has been known to stay relatively stable given different types of sensory inputs[82]. In359

comparison, functional connectivity changes in such a fast and dramatic manner that some even try to model its360

temporality within a single trial [83]. There are various reasons for this rapid functional adaptation, which could be361

a change of task [32, 33, 34, 35], perceptual states [84], visual stimuli [85, 22, 23], etc. However, most prior studies362

were either restricted to the primary visual cortex, or to voxel-level recordings obtained through fMRI, or both. It thus363

remains unclear whether the functional interactions on a single-neuron scale across multiple cortical regions are also364

dynamically adapted to the visual inputs. One major aim of our study was to fill this knowledge gap. By studying365

interneuronal functional connections, our work could help improve our understanding of neuron-to-neuron connections366

(e.g., at the synaptic scale). In contrast, studies of voxel-scale functional connectivity based on fMRI data might be less367

informative about these finer-scale interactions.368

One of the major challenges of studying functional connectivity lies in the existence of inhibitory correlations369

and anti-correlated patterns: there is a lack of strong theoretical tools for analyzing networks with both positive and370

negative edges [86]. While many works on functional connectivity disregard inhibition and only focus on excitatory371

connections for simplicity, inhibitory connections play a crucial functional role in visual processing [87, 88]. This372

highlights the need for a network analysis framework that possesses the ability to handle both positive and negative373

edges. We address this problem by adopting and modifying motif and module detection methods for signed networks,374

and used these methods to investigate how (signed) functional networks vary on local and global scales. The inclusion375

of edge sign in motif analysis enables us to further distinguish motifs, since the same unsigned connectivity could376

correspond to different functions depending on the edge signs [61]. The definition of functional modules can be377

subjective regarding whether to keep inhibitory connections inside or between modules. Nonetheless, we showed that378

even though qualitatively similar conclusions can be drawn without distinguishing functional inhibition from excitation379

(Supplementary Fig. 11), ignoring edge sign (as in prior works) could lead to a less detailedunderstanding of the exact380

pattern of functional segregation and specialization.381

While our detailed methods thus provide a more comprehensive analysis of how functional connectivity flexibly382

adapts to the statistics of visual input, we recognize some limitations to our analyses. First, we do not distinguish383

neurons according to their cell types. This limits our ability to relate our functional connectivity results to the growing384

literature on microcircuit architectures. In addition, due to incomplete recording, we observe only a subset of the385

neurons in each brain area. Furthermore, correlation-based network inference can potentially lead to false direct386

edge identification via high-order connections. These limitations are inherent to neural activity-based construction387

of functional connectivity, and not just to our study. Nevertheless, we do not believe that these common limitations388

constitute serious flaws in our analysis. Here we are not trying to find functional networks that topologically resemble389

the anatomical network (in which case the incomplete recording issue would be quite detrimental). Instead, our focus is390

on the adaptation of inter-neuronal interaction patterns to different visual stimuli. These interactions can be identified391

even in incomplete recordings. On the other hand, incomplete observation might explain the presence of nonconforming392

edges in some of our analyses, such as the presence of both excitatory and inhibitory edges emanating from a single393

neuron. At first glance, these neurons are at odds with Dale’s principle, which suggests that such bivalent neurons are394

very uncommon in the neocortex. However, given the incomplete recordings, there could be unobserved inhibitory395

neurons that mediate the effective inhibitory impact of an excitatory neuron on some other neurons in the circuit.396

Additional limitations of our study arise from experimental constraints and the nature of the Neuropixels dataset397

collected from extracellular electrophysiology probes. Kilosort2 was used to identify spike times and assign spikes to398

individuals [89], however, no current spike sorting algorithm can ensure a completely accurate assignment of observed399

spikes to individual neurons. This means some certain nodes in our network could correspond to more than one neuron,400

or that there could be multiple nodes corresponding to the same neuron [90]. Finally, the limited set of visual stimuli401

used in our experiments could introduce bias into our analysis since we do not have multiple different sets of stimuli402

within the same stimulus type. This limitation prevents us from comparing the functional connectivity driven by distinct403
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stimuli within the same category (i.e., more different clips of natural movies). On the other hand, we use a relatively404

wide range of natural image and natural movie stimuli, and sampled multiple stimulus types of varying complexity.405

While these laboratory conditions are much more controlled than natural viewing conditions, we nevertheless have406

determined functional connectivity under a wide range of stimulus conditions.407

On the timescale of sensory processing, neuronal networks have relatively fixed anatomical connectivity. Their408

functional connectivity, however, can and does vary quite substantially. Our work revealed striking patterns to this409

functional reorganization. These patterns suggest potentially important principles governing cortical computation,410

such as the dynamical organization of groups of neurons into feedforward loop motifs, and the adjustment of network411

modularity based on stimulus complexity. Beyond their relevance for basic neuroscience, these findings may provide412

guidance for how to engineer dynamically robust information processing systems.413

4 Methods414

4.1 Dataset415

We analyzed the Neuropixels dataset from Allen Institute [26]. The Neuropixels project uses high-density extracellular416

electrophysiology probes to record spikes from multiple regions in the mouse brain. Data used to construct functional417

networks are recordings of the neural activity by 6 Neuropixels probes in 6 visual cortical areas (V1, LM, RL, AL, PM,418

AM) from 7 mice while the mice passively viewed a visual stimulus set that contains 6 types of visual stimuli with419

multiple repeats: grey screen (simulation for resting-state activity), flashes, drifting gratings, static gratings, natural420

scenes and natural movies. On average, there are 668± 131 units simultaneously recorded for each mouse. In order to421

make a fair comparison across different visual stimuli, only neurons with a firing rate of at least 2 Hz during all stimuli422

are included in our analysis, thus the number of neurons (size of the functional network) is the same for each mouse423

given different stimuli. As a result, there are 176± 44 units on average for each mouse.424

4.2 Cross-correlogram and significant functional connection425

Functional connectivity is measured through Cross-correlograms (CCGs) [91]. For each stimulus type, the average426

CCGs across all stimulus presentations is calculated. In order to focus on the change in connectivity driven by different427

stimulus types, we dismissed stimulus conditions and used all presentations as trials. CCG for lagged correlation from428

neurons A to B is defined as429

CCGAB(τ) =
1
M

∑M
i=1

∑N
t=1 x

i
A(t)x

i
B(t+ τ)

θ(τ)
√
λAλB

(1)

where M is the number of trials, N is the number of time bins, xi
A and xi

B are the spike trains for neuron A and neuron430

B, τ ≥ 0 is the time lag between the spike trains, θ(τ) = M − τ represents a triangle function that corrects for the431

overlap time bins, λA and λB are the mean firing rates for the two neurons. It is worth noting that we only allow for432

non-negative time lag for the sake of bidirectional connections. We used the jitter correction method to remove slow433

temporal correlations [92]. The jitter-corrected CCG is obtained as the difference between CCGs of the original and434

jittered spike trains435

CCGjc = CCG− CCGjittered (2)
Apart from using ‘sharp peaks’ to define significant functional connections, we also included ‘sharp intervals’ to take436

into consideration the polysynaptic connections between neuron pairs with potentially multiple time lags. Specifically,437

for a given duration D ∈ [1, τmax + 1], where τmax = 12 ms similar to the 13 ms window in previous work [27], the438

set of moving average CCG is obtained by439

C(D) =

{
1

D

t1+D−1∑
τ=t1

CCGjc(τ), t1 ∈ [0, T −D + 1]

}
(3)

where T is the total length of spike trains. Therefore, there is an excitatory connection if440

1

D

t0+D−1∑
τ=t0

CCGjc(τ) > µC(D) + nσC(D) (4)

and an inhibitory connection if441

1

D

t0+D−1∑
τ=t0

CCGjc(τ) < µC(D) − nσC(D) (5)
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where t0 ∈ [0, τmax − D + 1] is the starting time lag of the ‘sharp peak/interval’, µC(D), σC(D) are the mean and442

standard deviation of C(D), n = 4 denotes the 4-fold significance level in our experiment. It is straightforward that443

D = 1 indicates a ‘sharp peak’ while D > 1 denotes a ‘sharp interval’. If equation (4) or (5) is true on multiple444

durations D ∈ {D1, D2, · · · , Ds}, D1 < D2 < · · · < Ds, we assume the smallest duration D = D1 since it always445

leads to the highest significance level.446

447

For bidirectional connections with zero time lag for both directions (τAB = τBA = 0), we only kept the448

direction with the higher significance level and removed the other direction unless its second highest sharp interval is449

also significant.450

Therefore, each connection was characterized by its lag, the duration of the significant interval in the CCG, and its451

significance value. Lag τ is the delay between spike trains of source neuron and target neuron, and the sign of the lag452

determines the direction of the connection. The duration D measures how long the significant peak/interval lasts, and453

the connection significance signals the Z score of the ‘sharp peak/interval’. Lags τ of across-area connections are454

higher than within-area connections (Supplementary Fig. 1C), which is as expected since it takes more time for a signal455

to travel between areas than within an area.456

In order to eliminate the bias brought by the lack of enough spikes or trials, we used normalized entropy for each trial457

to measure its statistical significance. For each neuron pair, we only keep trials in which spike trains of both neurons458

have a normalized entropy of at least 0.9.459

4.3 Reference model and signed motif analysis460

Since functional networks are constructed as signed networks, signed motif analysis needs to be defined. Similar461

to unsigned motif detection, to examine the statistical significance of signed n-neuron motifs in the networks, we462

generated random networks using various reference models as the baseline and conducted a comparative analysis of463

motif frequency between the empirical network and random networks.464

465

Three types of commonly used reference models are adopted in this work: Erdős-Rényi model, Degree-preserving466

model and Pair-preserving model. However, they are all defined on unsigned networks. In order to tailor these models467

for analysis in the context of signed networks, we randomly assigned original edge signs to reference networks468

randomized using Erdős-Rényi model, Degree-preserving model and Pair-preserving model. Furthermore, we defined469

the Signed-pair-preserving model by preserving the edge signs for each neuron pair in the Pair-preserving model during470

shuffling (Supplementary Fig. 3B). Therefore, surrogate networks generated using all four reference models have the471

same number of positive/negative connections as the real network.472

473

Table 1 lists the comparison between all four reference models. Erdős-Rényi model randomly shuffles con-474

nections while preserving network size, density and weight distribution [60], Degree-preserving model generates475

random networks while preserving size, density, weight distribution and degree distribution [93], Pair-preserving model476

randomizes the network while keeping size, density, weight distribution, degree distribution and neuron pair distribution477

[56] while the Signed-pair-preserving model preserves the signed pair distribution (Fig. 2A) in addition to the first three478

properties. We use Signed-pair-preserving model for signed motif analysis. For all analyses including a reference479

model, we randomly generated 200 surrogate networks.480

481

For two-neuron motif analysis, we adopted Erdős-Rényi model as the reference model and computed the rel-482

ative count for each type of two-neuron connection by dividing the count of the empirical network and the average483

count of surrogate networks. For simplicity, we only focused on three-neuron subnetworks apart from two-neuron484

subnetworks during motif analysis. We used the Z score of intensity compared with reference models to determine485

motif significance [59]. The intensity of a certain motif M is defined as the summation over the intensities of all486

subgraphs g that have the structure of M487

I(M) =
∑
g∈M

I(g) (6)

where the intensity of a certain subgraph is defined as the geometric mean of all its connection strengths488

I(g) =

 ∏
ij∈lg

wij

 1
|lg|

(7)
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Table 1 | Reference models
Reference model size & density & weight degree distribution pair distribution signed pair distribution

Erdős-Rényi model ✓
Degree-preserving model ✓ ✓
Pair-preserving model ✓ ✓ ✓
Signed-pair-preserving model ✓ ✓ ✓ ✓

where lg denotes the set of connections in g and wij is the strength of the connection from neuron i to j. Then the Z489

score of intensity for motif M can be computed as490

ZM =
IM − ⟨iM ⟩√
⟨i2M ⟩ − ⟨iM ⟩2

(8)

where iM is the total intensity of motif M in one realization of the reference model.491

4.4 Signed module detection492

The original Modularity used to detect community structure for directed networks [94] is defined as Q̂ = 1
m

∑
ij

[
Aij−493

kin
i kout

j

m

]
δ(σi, σj), where A is the adjacency matrix of the network, m is the number of links, kin, kout represent the494

in-degree and out-degree, respectively. δ is the Kronecker delta function and σi denotes the community label that node495

i is assigned to. In the presence of negative links, we denote A+
ij = Aij if Aij ≥ 0 and zero otherwise, A−

ij = −Aij if496

Aij ≤ 0 and zero otherwise, so that A = A+ −A−. In order to cluster nodes towards social balance, [95] proposed a497

frustration metric
∑

ij(λA
−
ij − (1− λ)A+

ij)δ(σi, σj). However, neither is suitable for partitioning signed networks. In498

this work we adopted modified Modularity for community detection of the signed, weighted and directed CCG network.499

Modified Modularity of a certain partition σ is defined as the weighted combination of the positive and negative parts500

[68, 69]501

Q(σ) =
m+

m+ +m−Q+(σ)− m−

m+ +m−Q−(σ) (9)

where502

Q+(σ) =
1

m+

∑
ij

(A+
ij − γ+p+ij)δ(σi, σj) (10)

503

Q−(σ) =
1

m−

∑
ij

(A−
ij − γ−p−ij)δ(σi, σj) (11)

γ+ and γ− are the resolution parameters, m+ and m− are the number of positive and negative connections, respectively,504

p+ and p− are the connection probabilities for positive and negative links, respectively. Here we take into consideration505

degree distribution by defining the probabilities as p± =
±kout

i
±kin

j

m± , where ±kouti is the positive/negative out-degree of506

neuron i and ±kinj is the positive/negative in-degree of neuron j. Therefore, equation (9) can be rewritten as507

Q(σ) =
1

m+ +m−

∑
ij

[Aij − (γ+p+ij − γ−p−ij)]δ(σi, σj) (12)

The Louvain method is a module (community) detection algorithm for partitioning networks into groups of nodes508

with dense connections within groups and sparse connections between groups [67]. The algorithm uses the original509

Modularity Q̂ as a quality function to optimize the partitioning of the network . The Louvain method operates through510

a series of iterative steps that merge neighboring modules to maximize the Modularity gain until a locally optimal511

partition is reached. The algorithm uses a bottom-up approach, starting from single-node modules, and iteratively512

merges modules to form larger ones. To take into consideration edge signs, we revised the quality function in the513

Louvain method from original Modularity Q̂ to modified Modularity Q. Therefore, the modified Louvain method514

aims to find an optimal partition of nodes such that positive connections are placed within modules while negative515
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A1 A2 · · · As sums
M1 n11 n12 · · · n1s a1
M2 n21 n22 · · · n2s a2
...

...
...

. . .
...

...
Mr nr1 nr2 · · · nrs ar
sums b1 b2 · · · bs

Table 2 | Contingency table for module partition M = {M1,M2, . . . ,Mr} and visual areal organization A =
{A1,A2, . . . ,As}. Mi denotes the set of neurons in the i-th module while Aj represents the set of neurons in the j-th
visual area. Since we only focus on six cortical areas, thus s = 6. Each entry nij denotes the number of neurons that
are assigned into module Mi are from visual area Aj : nij = |Mi ∩ Aj |.

connections are between modules.516

517

In order to determine the resolution parameters for module analysis, we obtained a Modularity difference518

heatmap by varying γ+ and γ− and computing the difference between Modularities of empirical and surrogate519

networks generated by the Signed-pair-preserving model, then looked for the γ+ and γ− that maximize the difference520

[14]. This way we obtained the modular partitioning that is the least random. We used the Z score of Modularity to521

show how modular a functional network is through comparison with a reference model (Signed-pair-preserving model).522

The Z score of Modularity is defined as523

ZQ =
Q− ⟨q⟩√
⟨q2⟩ − ⟨q⟩2

(13)

where q is the Modularity in one realization of the reference model. Only modules with a size of at least four neurons524

are included in subsequent analysis to eliminate the noise influence of isolated single neurons, pairs and triplets. Note525

that we included connection strength in both motif and module analyses. The CCG peak values represent connection526

strengths, i.e., we use absolute sum of positive/negative connection weights instead of number of positive/negative527

connections and the positive/negative degree of a neuron is replaced by total positive/negative connection weights.528

Unless otherwise stated, Q represents the modified Modularity for signed networks. When visualizing modular structure,529

the location of each node is determined by applying the Fruchterman-Reingold Layout recursively on the hypergraph530

and then the subgraph of each community (python package Netgraph).531

4.5 Analysis of modular structure532

To measure the fundamental properties of modular structure, we used (weighted average) coverage, (weighted average)533

purity and Adjusted Rand Index (ARI) to show how neurons from different visual areas are clustered together. Coverage,534

defined as maxj
|Mi∩Aj |

|Aj | and purity, defined as maxj
|Mi∩Aj |

|Mi| , are neuron-level metrics, while their weighted averages535

(WA) with module size as weight are network-level metrics. The WA coverage is536 ∑
i maxj

|Mi||Mi∩Aj |
|Aj |∑

i |Mi|
(14)

whereas the WA purity is537 ∑
i maxj |Mi ∩ Aj |∑

i |Mi|
(15)

For each module partition, we also used Adjusted Rand Index (ARI) to measure its similarity to areal organization for538

each network. Based on the contingency table 2, ARI is defined as539

ARI =

∑
ij

(
nij

2

)
−

[∑
i

(
ai
2

)∑
j

(
bj
2

)]/(
n
2

)
1
2

[∑
i

(
ai
2

)
+

∑
j

(
bj
2

)]
−

[∑
i

(
ai
2

)∑
j

(
bj
2

)]/(
n
2

) (16)
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4.6 Multi-resolution module partition540

To reduce noise in module partition, we focused on the most active neurons that have at least 1 connection during all541

stimuli when examining how module partition changes with resolution parameters. Since the module partition method542

(modified Louvain method) is stochastic, 200 independent runs were carried out for partitioning any empirical network.543

To compare module partitioning results across resolution parameters, we combined multiple partitioning results based544

on a voting mechanism that keeps frequent modules. We first looped over each run of the modified Louvain algorithm545

and for each module in the run, updated the module assignment count for each node in the module. Next, we initialized546

a list of unassigned nodes and assigned them to the module with the highest vote count that it is partitioned into during547

at least one run. Each node was only assigned to one module. In each step, we removed all the nodes assigned to the548

most frequent module from the list of unassigned nodes and continued until all nodes were assigned to a module.549

550

Due to the significantly greater abundance of excitatory connections compared to inhibitory connections, the551

parameter γ+ exerts a substantially more pronounced effect on the outcomes of module partitioning than γ−.552

Consequently, we limited the range of variation for γ− while placing greater emphasis on the alignment and comparison553

of module identity with γ+ across a broader range of values.554

555

To compare module partitions across multiple resolutions, we assigned module IDs to modules across resolu-556

tions based on their hierarchical structure and produced a visualization of the resulting heatmap. To accomplish this, we557

started from the highest resolution, and traversed through the resolutions in reverse order. For the highest resolution, we558

assigned each module a unique ID.559

560

Then for subsequent resolutions, we identified the largest submodule from the previous resolution and deter-561

mined that its ID is inherited from previous module. To achieve this, we consider the modules from the previous562

resolution and calculated their overlaps with the current module. We select the submodule(s) with the maximum563

overlap and retrieve the corresponding ID(s) assigned to it. These ID(s) are assigned to the current module, ensuring564

consistency and preserving the hierarchical relationship across resolutions. For other modules that are not the largest565

submodule of any previous module, we assigned a new module ID to it.566

567

Once the module IDs are assigned to the modules for all resolutions and stimuli, we sorted the nodes within568

each area based on their combined similarity across all stimuli to ensure an intuitive visualization. Specifically, we569

employed a two-opt optimization algorithm to determine an optimal node order that maximizes the similarity between570

module IDs of adjacent nodes across resolutions. The object is to minimize the hamming distance between 10 adjacent571

nodes, making neighboring nodes more likely to have similar module IDs across resolutions.572

4.7 Statistical analysis573

Since module partitioning and the generation of surrogate networks are both stochastic, each analysis involving574

modular structure or surrogate networks is performed with 200 independent runs. We adopt Cochran-Armitage trend575

test to assess the association between variables. Student’s t-test is used for the significance level between Gaussian576

distributions, and Shapiro-Wilk test is used for normality test. If at least one distribution is not normal, Wilcoxon577

rank sum test is used. Kolmogorov-Smirnov test is used to test whether a distribution is the largest among a set of578

distributions. Benjamini/Hochberg method is used to correct p value for false discovery rate in multiple tests.579

580

For data with a limited number of samples, the non-parametric bootstrap method was used to calculate the581

confidence interval for a given sample of data. The confidence interval is based on the distribution of the medians of the582

bootstrap samples, which is an approximation of the sampling distribution of the median of the population from which583

the data were drawn. The percentile method is used to calculate the confidence interval, which involves finding the584

upper and lower bounds of the interval based on the percentiles of the bootstrap distribution. Specifically, we used a585

95% confidence level for all the confidence intervals, the sample size was 10000.586

5 Data availability587

All the data analyzed in this manuscript is part of the Allen Brain Observatory introduced in [26]. The588

data used to generate main text Figs. 1–5 is available for download in Neurodata Without Borders589

(NWB) format via the AllenSDK. Example Jupyter Notebooks for accessing the data can be found at590

https://allensdk.readthedocs.io/en/latest/visual_coding_neuropixels.html.591
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6 Code availability592

Code for analyses in the manuscript and generation of figures are available from the repository:593

https://github.com/HChoiLab/functional-network.594

7 Acknowledgements595

We thank Yu Hu, Josh Siegle, Eric Shea-Brown, and Stefan Mihalas for helpful and insightful comments on the596

manuscript.597

8 Author contributions598

Conceptualization (DT, JZ, XJ, HC); Methodology and Software (DT); Formal Analysis (DT); Investigation (DT, JZ,599

XJ, HC); Writing (DT, JZ, XJ, HC); Visualization (DT); Supervision (JZ, XJ, HC)600

9 Funding601

This work was supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada602

(RGPIN-2019-06379) and a Canada Research Chair grant to J.Z., a grant from the Tsinghua–Peking Center for Life603

Sciences to X.J., and the National Eye Institute of the National Institutes of Health under Award Number R00 EY030840604

and a Sloan Research Fellowship to H.C. The content is solely the responsibility of the authors and does not necessarily605

represent the official views of the National Institutes of Health.606

10 Competing interests607

The authors declare no competing interests.608

References609

[1] Sen Song, Per Jesper Sjöström, Markus Reigl, Sacha Nelson, and Dmitri B Chklovskii. Highly nonrandom610

features of synaptic connectivity in local cortical circuits. PLoS Biology, 3(3):e68, 2005.611

[2] Ho Ko, Sonja B Hofer, Bruno Pichler, Katherine A Buchanan, P Jesper Sjöström, and Thomas D Mrsic-Flogel.612

Functional specificity of local synaptic connections in neocortical networks. Nature, 473(7345):87–91, 2011.613

[3] Ho Ko, Lee Cossell, Chiara Baragli, Jan Antolik, Claudia Clopath, Sonja B Hofer, and Thomas D Mrsic-Flogel.614

The emergence of functional microcircuits in visual cortex. Nature, 496(7443):96–100, 2013.615

[4] MICrONs Consortium and et al. Functional connectomics spanning multiple areas of mouse visual cortex. bioRxiv,616

2021.617

[5] Seung Wook Oh, Julie A Harris, Lydia Ng, Brent Winslow, Nicholas Cain, Stefan Mihalas, Quanxin Wang, Chris618

Lau, Leonard Kuan, Alex M Henry, et al. A mesoscale connectome of the mouse brain. Nature, 508(7495):207–619

214, 2014.620

[6] Joseph E. Knox, Kameron D. Harris, Nile Graddis, Jennifer D. Whitesell, Hongkui Zeng, Julie A. Harris, Eric621

Shea-Brown, and Stefan Mihalas. High-resolution data-driven model of the mouse connectome. Network622

Neuroscience, 3(1):217—-236, 2018.623

[7] Ann M Hermundstad, Danielle S Bassett, Kevin S Brown, Elissa M Aminoff, David Clewett, Scott Freeman, Amy624

Frithsen, Arianne Johnson, Christine M Tipper, Michael B Miller, et al. Structural foundations of resting-state625

and task-based functional connectivity in the human brain. Proceedings of the National Academy of Sciences,626

110(15):6169–6174, 2013.627

[8] Enrique C.A. Hansen, Demian Battaglia, Andreas Spiegler, Gustavo Deco, and Viktor K. Jirsa. Functional628

connectivity dynamics: Modeling the switching behavior of the resting state. NeuroImage, 105(15):525–535,629

2015.630

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.03.547364doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.03.547364
http://creativecommons.org/licenses/by-nc-nd/4.0/


STIMULUS-DEPENDENT FUNCTIONAL NETWORK TOPOLOGY IN MOUSE VISUAL CORTEX

[9] Mikail Rubinov and Olaf Sporns. Complex network measures of brain connectivity: uses and interpretations.631

NeuroImage, 52(3):1059–1069, 2010.632

[10] Ed Bullmore and Olaf Sporns. Complex brain networks: graph theoretical analysis of structural and functional633

systems. Nature Reviews Neuroscience, 10(3):186–198, 2009.634

[11] Hae-Jeong Park and Karl Friston. Structural and functional brain networks: from connections to cognition.635

Science, 342(6158):1238411, 2013.636

[12] Valeria Della-Maggiore and Anthony R McIntosh. Time course of changes in brain activity and functional637

connectivity associated with long-term adaptation to a rotational transformation. Journal of Neurophysiology,638

93(4):2254–2262, 2005.639

[13] Casey M. Schneider-Mizell, Forrest Bodor, Agnes L. amd Collman, Derrick Brittain, Adam A. Bleckert, Sven640

Dorkenwald, Nicholas L. Turner, Thomas Macrina, Kisuk Lee, Ran Lu, Jingpeng Wu, and et al. Chandelier cell641

anatomy and function suggest a variably distributed but common signal. bioRxiv, 2020.642

[14] Julie A Harris, Stefan Mihalas, Karla E Hirokawa, Jennifer D Whitesell, Hannah Choi, Amy Bernard, Phillip643

Bohn, Shiella Caldejon, Linzy Casal, Andrew Cho, et al. Hierarchical organization of cortical and thalamic644

connectivity. Nature, 575(7781):195–202, 2019.645

[15] Evelyn Tang, Chad Giusti, Graham L Baum, Shi Gu, Eli Pollock, Ari E Kahn, David R Roalf, Tyler M Moore,646

Kosha Ruparel, Ruben C Gur, et al. Developmental increases in white matter network controllability support a647

growing diversity of brain dynamics. Nature Communications, 8(1):1252, 2017.648

[16] Danielle S Bassett and Edward T Bullmore. Small-world brain networks revisited. The Neuroscientist, 23(5):499–649

516, 2017.650

[17] Hannah Choi and Stefan Mihalas. Synchronization dependent on spatial structures of a mesoscopic whole-brain651

network. PLOS Computational Biology, 15(4):e1006978, 2019.652

[18] Christopher J Honey, Rolf Kötter, Michael Breakspear, and Olaf Sporns. Network structure of cerebral cortex653

shapes functional connectivity on multiple time scales. Proceedings of the National Academy of Sciences,654

104(24):10240–10245, 2007.655

[19] Christopher J Honey, Olaf Sporns, Leila Cammoun, Xavier Gigandet, Jean-Philippe Thiran, Reto Meuli, and656

Patric Hagmann. Predicting human resting-state functional connectivity from structural connectivity. Proceedings657

of the National Academy of Sciences, 106(6):2035–2040, 2009.658

[20] Zhuokun Ding, Paul G. Fahey, Stelios Papadopoulous, Eric Wang, Brendan Celli, and et al. Functional connec-659

tomics reveals general wiring rule in mouse visual cortex. bioRxiv, 2023.660

[21] Adam Kohn and Matthew A Smith. Stimulus dependence of neuronal correlation in primary visual cortex of the661

macaque. Journal of Neuroscience, 25(14):3661–3673, 2005.662

[22] Kevan AC Martin and Sylvia Schröder. Functional heterogeneity in neighboring neurons of cat primary visual663

cortex in response to both artificial and natural stimuli. Journal of Neuroscience, 33(17):7325–7344, 2013.664
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Fig. 1 | From spike trains to functional connectivity for mouse visual cortex. (A) Schematic of data collection with
Neuropixels probes inserted through six visual cortical areas (AM, PM, AL, RL, LM and V1). (B) Example spike
trains of 193 units from the visual cortex of a mouse during six different types of stimuli. For brevity, each stimulus is
denoted using a unique symbol in all figures. (C) Example CCGs (cross-correlograms) of excitatory (red)/inhibitory
(blue), unidirectional/bidirectional and monosynaptic (‘sharp peak’)/polysynaptic (‘sharp intervals’) connections. (D)
(left) Example matrix of CCG with units ordered by area during natural movie stimuli. (right) Connectivity matrix
with only significant connections (|Z| > 4). (E) Density of excitatory and inhibitory connections during all visual
stimuli. Density is defined as the number of connections normalized by total possible number of connections. (F)
Fraction of within-area connections, fraction of excitatory connections and clustering coefficient against network
density. Each visual stimulus is characterized by a symbol, consistent with (B). (G) Kernel density estimation (KDE) of
signal correlation distributions for disconnected neuron pairs and pairs with inhibitory/excitatory connections during
presentations of four types of visual stimuli.
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Fig. 2 | Highly preserved local structure during different types of visual stimuli. (A) Relative count of signed neuron
pairs with respect to reference model (Erdős-Rényi model). All three types of bidirectional pairs are considerably
over-represented. (B) 13 types of motifs without edge signs. Examples of signed motifs based on Feedforward Loop
structure (motif ID = 6) are shown. Excitatory-FFL-based (eFFLb) motifs are defined as motifs with at least one FFL
structure consisting of all excitatory connections. Note that eFFLb motifs can be classified into four types based on the
number of mutual connections: zero (ID = 6), one (ID = 9, 10, 11), two (ID = 12) and three (ID = 13). In what follows,
we use the prefix “e” or “i” to denote signed motif types with only excitatory connections or only inhibitory connections,
respectively. (C) Motif intensity significance sequences of all signed motifs (signed three-neuron subnetworks). Each
row shows results for a certain stimulus type and each color corresponds to a certain unsigned motif structure. Motif
intensity significance for each signed motif is obtained through its intensity Z score of the empirical network with
Signed-pair-preserving model as the reference. The overall sequences are remarkably similar across visual stimulus
classes, with six types of over-represented motifs (eFFLb motifs) and three under-represented motifs preserved. It is
worth noting that the above-mentioned nine significant motifs only contain excitatory connections.
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Fig. 3 | Same motifs and similar patterns are organized from different neurons. (A) Average absolute motif significance
(absolute Z score of intensity) across all signed motifs against network density. Similar to within-area fraction and
clustering coefficient (Fig. 1F), there is also a logarithmic relationship between motif significance and density. (B)
Pairwise correlation of normalized motif intensity distribution for six visual stimuli. Extremely high correlation proves
the similar motif presence during different types of stimuli. (C) Signal correlation during four visual stimuli (except for
resting state) for within-eFFLb-motif, within-other-motif connections and others. Other over-represented motifs are
determined using a significance level of 99%. ∗p < 0.05, ∗ ∗ ∗ ∗ p < 0.0001, rank-sum test. (D) Fraction of motifs with
at least one V1 neuron or all three V1 neurons during all visual stimuli for six over-represented excitatory-feedforward-
loop-based (eFFLb) motifs. Six colors represent six types of eFFLb motifs, consistent with Fig. 2C. From left to right,
motif ID = e6, e9, e10, e11, e12, e13. (E) Intersections of unique motif sets for motif ID = e6 during six types of stimuli.
Horizontal bar plot shows the size of each intersection set while vertical bar plot displays the number of signed motif
ID = e6 for each type of stimulus. A unique motif is defined as a certain signed motif with three specific neurons, and
intersections with less than 20 elements are removed for brevity (see Supplementary Fig. 4 for the complete results).
A large number of unique motifs appear only during one type of stimuli, demonstrating that even though functional
motifs are preserved across visual stimuli, component neurons are changing. (F) Multiple motif intensity significance
sequences were obtained through four different reference models for natural movies as the representative stimulus
type: Erdős-Rényi model, Degree-preserving model, Pair-preserving model and Signed-pair-preserving model with
an increasing number of preserved network properties (Methods). Colors are consistent with (D) and Fig. 2C, and
connectivity pattern is shown only once for each type of most significant signed motif for brevity. Empirical functional
networks are progressively more similar to surrogate networks from left to right.
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Fig. 4 | Distinct modular structures during different types of visual stimuli. (A) Topological structure of functional
connectivity of a mouse during six types of visual stimuli with neurons colored by area. The color of each connection
shows its sign with red denoting excitatory connection and blue representing inhibitory correlation. The community
partition is obtained through modified Modularity for signed networks (see Methods). We computed the Z score of
Modularity with Signed-pair-preserving model as the reference to show the degree to which functional network has
a modular structure. Networks during gratings and natural stimuli show significant modular structure. (B) We used
three measures to reveal the modular structure regarding visual area from different perspectives. Coverage and purity
are module-level measures, where the former marks the degree to which the module covers any visual area, while
the latter measures the degree to which all neurons in the module are from the same visual area. We computed the
average coverage and purity weighted by module size to show the overall properties of the whole functional network
(see Methods). Adjusted Rand Index (ARI), a network-level measure, was also used to quantify the difference between
module partition and visual areal organization. The weighted average (WA) coverage is 0.375 and 1 (ranges from 0 to
1), WA purity is 0.333 and 1 (ranges from 0 to 1) and ARI is -0.03 and 1 (ranges from -0.5 to 1) for the corresponding
two toy examples visualizing the ‘low’ and ‘high’ cases for the measure. (C) WA coverage, WA purity and ARI during
six visual stimuli. The error bars show the confidence intervals over all mice obtained with non-parametric bootstrap
method. In general, there tend to be fewer and larger modules with higher coverage during grating stimuli, whereas
we usually find more and smaller modules with higher purity during natural stimuli. As a result, ARI is lower during
resting state and flash while higher during grating and natural stimuli.
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Fig. 5 | Stronger segregation during natural stimuli. (A) Signal correlation for within-module and across-module
connections. ∗ ∗ ∗ ∗ p < 10−4, Student’s t-test. Connected neurons partitioned into the same module tend to have
higher signal correlations than connected neurons from different modules, demonstrating our module partition provides
insight into not only the connectivity pattern but also functional similarity to some extent. (B) Number of modules
with normalized size, coverage or purity higher than the threshold. Normalized size is the size of module normalized
by the total number of neurons in the network, insets show the plots on a log-log scale. (C) Number of modules
with purity higher than the threshold for each visual area during all visual stimuli. (D, E) Properties of the modular
structure during natural scene and natural movie presentations. We examined four different aspects of the case where
neurons from a single visual area are divided into multiple modules (in which they are the dominant area), with signal
correlation indicating the functional similarity along with connection probability, excitatory fraction and inhibitory
fraction demonstrating the validity of our module partitioning algorithm. ∗ ∗ ∗ ∗ p < 10−4, Student’s t-test.
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Fig. S1 | Basic properties of functional networks during all visual stimuli. (A) CCG adjacency matrices of a mouse
given distinct stimuli (on the same scale as in Fig 1D). (B) Directed degree distributions of a mouse given all stimuli.
(C) Across-area VS within-area comparisons for the lag τ , duration D and their sum τ +D.
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Fig. S2 | Cochran-Armitage trend test for association between (A) (functional) connection probability and distance of
neurons. The rest of the plots show the Cochran-Armitage trend test for association between signal correlation and (B)
(functional) connection probability, (C) probability of a functional connection being excitatory and (D) probability of a
functional connection being inhibitory, under four different types of visual stimuli. Here we excluded flashes since
there are only two stimulus conditions (light or dark) and signal correlation could be heavily biased and trivial.
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Fig. S3 | Distributions of (signed) neuron pairs. (A) Distribution of neuron pairs without edge signs. (B) Distribution of
signed neuron pairs.

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.03.547364doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.03.547364
http://creativecommons.org/licenses/by-nc-nd/4.0/


STIMULUS-DEPENDENT FUNCTIONAL NETWORK TOPOLOGY IN MOUSE VISUAL CORTEX

1
2

3
4

5

6
7

8

9
10

11

12

13

Fig. S4 | All signed motifs in the same order as Fig. 2C.
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Fig. S5 | Further comparison of within-eFFLb-motif and other connections. (A) (left) Connection strength, (center) Z
score of CCG and (right) physical distance for within-eFFLb-motif connections and others during all visual stimuli.
∗ ∗ p < 10−2, ∗ ∗ ∗ ∗ p < 10−4, Student’s t-test. (B) Number of significant signed motifs with intensity Z score higher
than the threshold (over-represented) or lower than the threshold (under-represented) during all visual stimuli. (C)
Example eFFL motif with CCGs for each connection and spike trains for each neuron.
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Fig. S6 | Intersections of unique motif sets for eFFLb motifs during six types of stimuli. All possible intersections with
at least 1 element are shown.
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Fig. S7 | Multi-resolution modular structure. (A) The Modularity difference heatmap between the empirical network
and reference model (Signed-pair-preserving model) is used to determine the resolution parameters γ+ and γ−, white
box represents the maximum of the heatmap while its coordinates correspond to the optimal resolution parameters. (B)
Modular partition at different resolution parameters for a mouse. Since empirical functional networks tend to have
more excitatory than inhibitory connections, γ+ has a larger impact than γ− thus we only show the results obtained
with three different values of γ−. Module IDs (colors) across different γ+ are determined by assigning the merged
module the ID of its largest submodule at the previous step (larger resolution parameter), similar to the previous method
[14]. Only neurons with at least one excitatory connection during any stimuli are included for brevity, and remaining
neurons within each visual area are ordered based on their partition similarity while the module IDs across different
multi-resolution modular partition maps are matched using a heuristic algorithm based on their similarity for visual
comparison. (C) The heatmap of pairwise adjusted rand index (ARI) between visual stimuli for the same mouse in (B).
Each multi-resolution modular partition map is considered a single clustering result, and ARI is used to measure the
similarity between different partition maps. Note that ARI is independent of the color-matching heuristic algorithm and
is thus more reliable. (D) The heatmaps of pairwise ARI between visual stimuli for two other mice. Only mice with
at least one neuron in each area are shown. Despite individual differences, the similarity between natural scenes and
movies is always among the highest.
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Fig. S8 | Fundamental properties of modular structure with module size. (top) Coverage/purity against relative module
size for four stimulus types where each dot represents a single module; relative module size is defined as module size
divided by the largest area size. (bottom) Coverage/purity against relative module size with regression after log binning.
Modules with a relative size larger than 1 are excluded in regression since their coverage/purity will introduce bias.
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Fig. S9 | Biological interpretation of the modular structure. Wald Test is used in (B), (D) and (E). (A) Probability of
finding connected neuron pairs inside the same module against their signal correlation, Cochran-Armitage trend test.
(B) Linear regression results of signal correlation of chunked tuning curves with equal length against WA purity for
(left) disconnected neuron pairs and (right) connected neuron pairs. Tuning curves are chunked into sequences with
equal lengths for a fair comparison across stimuli, each dot represents the functional network of a mouse during certain
stimulus presentations. (C) Linear regression results of WA coverage against network density. (D) Physical distance
between connected neuron pairs that belong to the same or different modules. ∗ ∗ ∗ ∗ p < 10−4, Student’s t-test. (E)
Linear regression results of WA purity against average distance between (left) within-module connected neuron pairs,
(center) across-module connected neuron pairs and (right) all connected neuron pairs. Each dot represents the functional
network of a mouse during certain stimulus presentations. (F) Average absolute motif significance (absolute Z score of
intensity) across all signed motifs against Z score of Modularity.
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Fig. S10 | Results on modular structure with original Modularity by omitting edge signs. (A) Topological structure of
functional networks during all visual stimuli. (B) Signal correlation for within-module and across-module connections.
∗ ∗ ∗ ∗ p < 10−4, Student’s t-test. (C) Number of modules with normalized size, coverage or purity higher than the
threshold, inset shows the plot on a log-log scale. (D) WA (weighted average) coverage, WA purity and ARI during six
visual stimuli, the error bars show the confidence intervals over all mice obtained with non-parametric bootstrap method.
(E) Number of modules against threshold on purity for each visual area separately during natural scenes and natural
movies. (F) Number of modules with purity higher than the threshold for each visual area during all visual stimuli.
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Fig. S11 | Functional networks constructed from different trials. (A) Motif sequence of the network during all trials
of natural scenes. (B) Motif sequences of the networks during two halves of the trials of natural scenes. Each row
corresponds to a realization of the random split. (C) Overlap percentage for eFFLb motifs. For each network, overlap
percentage is defined as the percentage of motifs that are found on this network and at least one other network.
Overlap percentage is higher for networks evoked by different trials from the same stimulus than different stimuli;
∗ ∗ ∗ ∗ p < 0.027, rank-sum t-test, corrected using Benjamini/Hochberg method.
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Fig. S12 | Functional networks constructed using different significance levels on functional connections. (A) Funda-
mental properties of the network on different significance levels (from 3-fold to 7-fold). (B) Motif sequences of the
networks on different significance levels. Only 3-fold and 5-fold are shown since higher significance levels lead to
extremely sparse networks. See Fig. 2C for results on 4-fold significance.
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