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Stimulus type shapes the topology of cellular
functional networks in mouse visual cortex

Disheng Tang 1,2,3 , Joel Zylberberg 4,5,8 , Xiaoxuan Jia1,3,6,8 &
Hannah Choi 2,7,8

On the timescale of sensory processing, neuronal networks have relatively
fixed anatomical connectivity, while functional interactions between neurons
can vary depending on the ongoing activity of the neurons within the network.
We thus hypothesized that different types of stimuli could lead those networks
to display stimulus-dependent functional connectivity patterns. To test this
hypothesis, we analyzed single-cell resolution electrophysiological data from
the Allen Institute, with simultaneous recordings of stimulus-evoked activity
from neurons across 6 different regions of mouse visual cortex. Comparing
the functional connectivity patterns during different stimulus types, we made
several nontrivial observations: (1) while the frequencies of different functional
motifswerepreserved across stimuli, the identities of the neuronswithin those
motifs changed; (2) the degree to which functional modules are contained
within a single brain region increases with stimulus complexity. Altogether,
our work reveals unexpected stimulus-dependence to the way groups of
neurons interact to process incoming sensory information.

Visual information is processed by networks of neurons spanning
multiple regions of the neocortex. The interactions between these
neurons determine the sensory information extracted by the brain and
used to guide behavior. For this reason, much prior work has investi-
gated properties of the networks that define the interactions between
neurons in visual cortex. For example, some work has focused on the
patterns of anatomical connectivity between individual neurons1–4, or
between larger voxels of cortical tissue5–8. At the same time, functional
networks—which describe the interactions between neurons—can dif-
fer substantially from anatomical networks9–11. Notably, while anato-
mical connectivity is relatively fixed on the timescale of sensory
processing, functional connectivity can vary as the neurons within the
network adjust their firing patterns quickly to different stimuli12,13. This
motivated us to ask whether and how different stimuli might engage
different functional networks with single-neuron resolution within the

visual cortex. Despite the clear importance of this question for
understanding visual processing, and the substantial literature on
functional and anatomical neural network structures (reviewed
below), we are unaware of any prior work that addressed how the
topological structure of functional networks between individual neu-
rons spanningmultiple regions varies as the stimulus type changes. To
fill this knowledge gap, we applied network analyses to simultaneous
recordings from hundreds of neurons in mouse visual cortex. Our
results indicate that distinct stimulus types can lead to different
topological structures of functional networks between individual
neurons in visual cortex.

Previous work investigated anatomical connectivity between
cortical neurons and regions using electron microscopy4,14, paired
intracellular electrophysiology recordings1,2, viral tracing5,15, and dif-
fusion tensor imaging16. These studies revealed many interesting

Received: 3 July 2023

Accepted: 13 June 2024

Check for updates

1School of Life Sciences, Tsinghua University, Beijing 100084, PR China. 2Quantitative Biosciences Program, Georgia Institute of Technology, Atlanta 30332
GA, USA. 3IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, PR China. 4Department of Physics and Astronomy, and Centre for
Vision Research, York University, Toronto ON M3J 1P3 ON, Canada. 5Learning in Machines and Brains Program, CIFAR, Toronto ON M5G 1M1 ON, Canada.
6Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, PR China. 7School of Mathematics, Georgia Institute of Technology, Atlanta
30332 GA, USA. 8These authors contributed equally: Joel Zylberberg, Xiaoxuan Jia, Hannah Choi. e-mail: dishengtang3@gmail.com; joelzy@yorku.ca;
jxiaoxuan@gmail.com; hannahch@gatech.edu

Nature Communications |         (2024) 15:5753 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-8325-4644
http://orcid.org/0000-0001-8325-4644
http://orcid.org/0000-0001-8325-4644
http://orcid.org/0000-0001-8325-4644
http://orcid.org/0000-0001-8325-4644
http://orcid.org/0000-0002-8208-5698
http://orcid.org/0000-0002-8208-5698
http://orcid.org/0000-0002-8208-5698
http://orcid.org/0000-0002-8208-5698
http://orcid.org/0000-0002-8208-5698
http://orcid.org/0000-0002-8192-1121
http://orcid.org/0000-0002-8192-1121
http://orcid.org/0000-0002-8192-1121
http://orcid.org/0000-0002-8192-1121
http://orcid.org/0000-0002-8192-1121
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49704-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49704-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49704-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49704-0&domain=pdf
mailto:dishengtang3@gmail.com
mailto:joelzy@yorku.ca
mailto:jxiaoxuan@gmail.com
mailto:hannahch@gatech.edu


features of anatomical neuronal connectivity networks, like their
modularorganization and small-worldness5,15,17,18, and their hierarchical
structure15. While anatomical connectivity (e.g., synaptic connections
between neurons) remains relatively static over the timescale of pro-
cessing visual inputs, functional connectivity can be much more
dynamic, thus motivating efforts to understand the relation between
functional and anatomical connectivity7,11,19–21. These efforts are com-
plicated by the fact that different types of stimuli lead to different
dynamical patterns of neural activity and to different degrees of cor-
relation between neurons22–29. Because functional connectivity
depends on these properties—e.g., on the time-lagged correlation
between the activities of neuron pairs30,31—the functional connectivity
can depend on the stimulus presented in the experiment.

Despite this potential complication, stimulus- and task-related
functional connectivity patterns obtained at a coarse scale using
non-invasive functional magnetic resonance imaging (fMRI) have
been reported to resemble resting-state functional connectivity
patterns32–34, while resting-state connectivity in turn resembles anato-
mical connectivity patterns35. In other reports—again, derived from
fMRI experiments—stimulus-evoked functional interactions were
found to vary with tasks or cognitive states36–40. These fMRI studies
raised the important question of whether and how the functional
connectivity of the underlying neuronal networks (i.e., at a finer single-
neuron scale) might change with stimulus or task conditions.

Studying functional connectivity at this finer scale presents sig-
nificant challenges due to technical limitations in simultaneously
recording from large populations of neurons with high spatial and
temporal resolution. Despite these challenges, prior work has shown
that functional connectivity: (1) shows frequency dependency41,42; (2)
varies by cell type within the cortex43; (3) depends on the contrast of a
visual stimulus44; and (4) reflects the existence of two main groups of
neurons, one whose activities follow those of the rest of the popula-
tion, and one whose activities do not26. Other studies looked into
assembly neurons45, network dynamics46, small-worldness47,48 and rich-
club structure49. While these studies have revealed much about the
stimulus-dependence of functional networks at single-neuron resolu-
tion, they have not included detailed analyses of networks spanning
multiple brain regions evoked by distinct stimulus types. On the other
hand, the previous reports of network analysis applied to single-
neuron resolution functional networks, either focused on responses
mainly to drifting grating stimulus with spontaneous activity as a
baseline comparison30,31, thus precluding an assessment of stimulus-
dependent network structure, or investigated the short-term adapta-
tion of pairwise functional connections50, lacking a comprehensive
analysis of the whole network. Therefore, it is still unclear whether and
how the topological organization of these functional networks (either
within a brain region, or spanning multiple regions) depends on sti-
mulus properties or other context-defining variables51.

To fill this gap, we used network analysis methods (similar to
those of refs. 30,31) to analyze the functional networks measured in
response to 6 different types of stimuli, of varying degrees of com-
plexity, ranging from full-field flashes up to natural movies. These
networkswereobtained from the simultaneously recorded activities of
hundreds of neurons in 6 different cortical regions with implanted
Neuropixels probes30. Thus, we were able to identify functional net-
works for each stimulus type, which spanned multiple brain regions.
Note that to focus on between-stimulus analyses, we constructed one
network based on all conditions for each stimulus type, hence the
functional networks embody total correlations rather than signal or
noise correlations. By studying the structures of these networks and
how they varied with stimulus type, we identified several surprising
features of the functional networks. First, while the distribution of
different types of 3-neuron connectivity motifs were quite similar for
the different stimuli, the specific identities of the neurons within those
motifs depended on the stimulus. Thismeans that the cortical network

is dynamically reorganized as the stimulus type changes, but does so in
amanner that preserves themotif frequencies. This finding points to a
potentially fundamental role for these motif distributions in main-
taining the function of the cortical networks52,53. Secondly, we identi-
fied highly-interactingmodules54,55 and found that thesemodules were
much more localized to a single brain region (as opposed to being
distributed between regions) for stimuli with higher complexity, such
as natural movies. Our results thus reveal distinct stimulus-dependent
topology of cortical functional networks, and imply a key organiza-
tional principle underlying that stimulus-dependence: preserved rela-
tive motif frequencies.

Results
To determine whether and how visual cortical functional networks
depend on the stimulus presented to the animal, we analyzed data
from Neuropixels probes inserted into six visual regions of mouse
cortex (Fig. 1A: V1, LM,RL, AL, PM, AM), which is previously released by
Allen Institute30. These probes simultaneously recorded neural activity
from each of these six regions while the mice were presented with
visual stimuli of varying degrees of complexity (Fig. 1B): flashes,
drifting gratings, static gratings, natural scenes and movies, and gray
screen (approximation for resting state, or spontaneous activity).
From the responses to each stimulus, we extracted the directed
functional connectivity using cross-correlograms (CCGs) between the
spiking responses of pairs of neurons (Fig. 1C). In order to take poly-
synaptic connections into consideration56, we examined ‘sharp inter-
vals’ instead of the ‘sharp peaks’ that might be used to identify
functions of monosynaptic connections30,57,58. These sharp intervals
were defined to have a short latency and potentiallymultiple time lags,
and were detected by searching for statistically significantly outlying
values in the CCG. Identification of bidirectional connections was
made possible by limiting lag τ to be non-negative, and each significant
connection was defined as positive or negative depending on the sign
of the significantly outlying CCG value (see Fig. 1C and Methods),
similar to the definition used in previous work59. Intuitively, if the
spiking of the sourceneuron is statistically strongly correlatedwith the
firing or non-firing of the target neuron with a short time lag, then
there exists a positive or negative functional connection between
them. It is noteworthy that within our analyses, excitatory and inhibi-
tory anatomical connections should be observed as positive and
negative functional connections, respectively. However, it is essential
to acknowledge that the reverse inference may not hold true. This is
because, unlike effective or causal connections, functional connec-
tions reflect the co-occurrence of spiking activities rather than direct
influence or causation.

To obtain a comprehensive understanding of the stimulus-
dependent structure of the functional networks (Fig. 1D), we con-
ducted network analyses at multiple topological scales, ranging from
the properties of pairwise connections to the local connectivity pat-
terns of third-order functional motifs, up to larger-scale functional
modules. Our control analysis on running speed (Supplementary Fig. 1)
showed that our subsequent observations are indeed determined by
the stimulus and not by locomotion.

Stimulus dependency of functional networks
We first investigated overall patterns of functional connections
between neurons across stimulus types by comparing the functional
connectivity matrices. We found there are some common network
features observed across stimulus types. Specifically, the functional
networks observed during all visual stimuli exhibited heavy-tailed
degree distributions (Supplementary Fig. 2B). Networks with this
property are known to be robust to random failures60, however, they
are more vulnerable to targeted attacks on hub neurons which could
lead to reduced network efficiency as observed in Alzheimer’s
patients61,62.
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While functional networks show some shared characteristics like
heavy-tailed degree distributions across stimuli, we also observed
network properties vary with stimulus complexity. We found that
natural stimuli (natural scenes and movies) tended to evoke fewer
functional connections than grating stimuli (both static and drifting
gratings) while full-field flashes drive the least correlated neural
activities, on the same level as resting state activity (Fig. 1E). These

findings are consistent with previous reports that natural stimuli dec-
orrelate neurons in primary visual cortex (V1)63,64. While these previous
works focus on V1, our results suggest that decorrelation by natural
stimuli is a general property of cortical circuits: it is found in higher
visual cortical areas as well.

While number of nodes (neurons) is predetermined by experi-
mental recording, network density, defined as the present number of
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Fig. 1 | From spike trains to functional connectivity for mouse visual cortex.
A Schematic of data collection with Neuropixels probes inserted through six visual
cortical areas (AM, PM, AL, RL, LM and V1), adapted from Jia, X. et al. High-density
extracellular probes reveal dendritic backpropagation and facilitate neuron clas-
sification. Journal of neurophysiology 121, 1831-1847 (2019)124. B Example spike
trains of 741 units from the visual cortex of a mouse during six different types of
stimuli. For brevity, each stimulus type is denoted using a unique symbol in all
figures. Image credit: Allen Institute for Brain Science. [https://observatory.brain-
map.org/visualcoding/]. C Example jitter-corrected CCGs (cross-correlograms) of
positive (red)/negative (blue), unidirectional/bidirectional and monosynaptic
(“sharp peak”)/polysynaptic (“sharp intervals”) connections. D (left) Example

matrix of jitter-corrected CCG with units ordered by area during natural movie
stimuli. (right) Connectivity matrix with only significant connections (∣Z∣ > 4).
E Density of positive and negative connections during all visual stimuli. Density is
defined as the number of connections normalized by total possible number of
connections. Error bars represent 95% confidence interval, n = 7mice. F Fraction of
within-area connections, fraction of positive connections and clustering coefficient
against network density. Each visual stimulus is characterized by a symbol, con-
sistent with (B). P values are obtained through two-sided Wald test. G Kernel
density estimation (KDE) of signal correlation distributions for disconnected neu-
ron pairs and pairswith negative/positive connections during presentations of four
types of visual stimuli.
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connections normalized by the maximum possible number of con-
nections, alone displays the most fundamental properties of a func-
tional network. The differences in network density mainly originate
from differences in positive connections (Fig. 1E), which results in the
strong correlation between the fraction of positive connections and
the network density (Fig. 1F,middle).We did a thorough analysis of the
firing-rate dependence of functional connections and found that the
difference in the number of connections during various stimulus types
cannot be explained by the difference in firing rate (Supplementary
Fig. 3). Even thoughnatural stimuli donot evoke thedensest functional
networks, the fraction of within-area connections is largest for static
gratings and natural stimuli (Fig. 1F, left, and Supplementary Fig. 2A;
p = 1.0 × 10−3, Kolmogorov–Smirnov test, one-sided). This is closely
related to the stimulus-dependent differences in modular network
structure, which we analyzed in more details later in this paper.

To determine how the stimulus-dependence of the network
density affects the network’s topological structure, we measured the
tendency for triplets of neurons to form closed triangles (e.g., three-
neuron motifs 6,7,9-13 in Fig. 2C). This tendency is quantified by the
clustering coefficient, and we found that it increases with increasing
network density regardless of stimulus type (Fig. 1F, right).

Motivated by previous work showing that neurons with similar
preferences tend to connect with each other2,4,65, we compared the
tuning similarity of neuronal pairs connected with positive and nega-
tive connections. To perform this comparison, we computed the ker-
nel density estimation (KDE) for signal correlation during presentation
of four visual stimulus types. Signal correlation is defined as the cor-
relation between average responses of neurons to different stimulus
conditions which is used to test whether two neurons have similar
tuning curves23,66. We computed these signal correlation separately for
pairs with positive connections, negative connections, and those with
no connections (Fig. 1G). For natural movies, we regarded each frame
as a different stimulus condition when computing the signal
correlation2. Since there are only two conditions for flashes (dark or
light), the signal correlation of either 1 or −1 could be trivial and thus is
not considered in this analysis. Similarly, the signal correlation is ill-
defined for the blank gray screen stimulus, and thus itwas also omitted
from this analysis.

For all visual stimuli, the signal correlations for connected neuron
pairs tended to be larger than for disconnected pairs, which had dis-
tributions centered around zero (Fig. 1G; p < 7.0 × 10−150, rank-sum test,
one-sided, adjusted using Benjamini/Hochberg method). Additionally,
neurons with positive connections tended to have higher signal cor-
relations than did pairs with negative connections (Fig. 1G;
p < 1.6 × 10−3, rank-sum test, one-sided, adjusted using Benjamini/
Hochberg method).

In agreement with the previous findings that neurons close in
space or sharing similar tuning curves are more likely to have synaptic
connections2,65, we found the probability of functional connections
decreases with increasing distance and increases with their increasing
signal correlation (Supplementary Fig. 4A, B; Cochran–Armitage test,
two-sided). In addition, the probability of a functional connection
being positive/negative significantly increased/decreased with signal
correlation during all visual stimuli (Supplementary Fig. 4C, D;
Cochran–Armitage test, two-sided), indicating that even though neu-
rons with similar preferences generally tend to be connected, the sign
of the connection depends on the extent of their tuning similarity.

Collectively, these analyses show that network density, fraction of
connections that are within a brain region (as opposed to between
regions), clustering coefficient, and the distribution of signal correla-
tion, depend systematically on the stimulus type.

Stimulus dependency of functional motifs
Having observed stimulus-dependency of the general network prop-
erties, we next turned our attention to the properties of the functional

motifs. Specifically, we investigated two- and three-node motifs in the
functional network. Similar to anatomically-defined structural motifs
which form fundamental building blocks of neural circuits1,67,68, func-
tional motifs, which are defined by correlated neural activities, repre-
sent elementary information processing components of a functional
network69. Although extensive over-representation of certain network
motifs such as feedforward loop is found mostly in anatomical
networks1,52,67,70, functional motifs (especially triplets) also have been
discovered to reflect the level of consciousness71,72, accurately predict
neural activity73, encode global topological information74, and exhibit
coupling with anatomical connections75.

To understand the distribution of two- and three-neuronmotifs in
each functional network, we adopted the intensity method for func-
tional motif detection. This method computes the Z-score of the
intensity for a given motif by comparing the motif frequency in the
empirical network and in a randomly-generated surrogate network76.
This method thus identifies how much more (or less) prevalent the
motif is in the real network than would be expected by chance in a
reference network randomly shuffled with certain preserved proper-
ties (e.g., density, degree distribution, etc) (Fig. 2A).

Note that, to characterize pairwise signedconnections (i.e., signed
two-neuron motifs), it is necessary to preserve the edge sign dis-
tribution when generating density-matched randomized surrogate
networks77. For this reason, we included edge signs in the
Pair-preserving model67 that preserves the distribution of (n-1)-neuron
motifs and used the resultant Signed-pair-preserving model to gen-
erate the surrogate network with the preserved signed (n-1)-neuron
motifs for comparing the motif frequency between the true network
and the randomly-generated one (Fig. 2A). Furthermore, we have
consistently observed and validated our findings by maintaining the
discretized distribution of anatomical distances between neurons (as
shown in Supplementary Fig. 5). This rigorous approach underscores
the robustness of our primary conclusions, affirming that they are an
accurate representation of the inherent characteristics of the func-
tional networks within the mouse visual cortex. In light of the limited
data on the anatomical location of neurons, we have adopted the
Signed-pair-preserving model for all analyses in the subsequent sec-
tions of our study.

As for two-neuron motifs, we found that bidirectional signed
functional connections are much more frequent than would be
expectedby chance in the randomnetwork (Fig. 2B). This recapitulates
the structural observations that bidirectional synaptic connections are
highly over-represented in cortex relative to density-matched random
networks1.

We further studied distributions of three-neuron motifs in func-
tional networks. There are 13 types of connected three-neuron motifs
(Fig. 2C), of which the Feedforward Loop (FFL) is arguably the most
studied type due to its ubiquitous nature in empirical networks such as
gene systems and neuronal networks70. The lollipop plot in Fig. 2D
shows the intensity Z-score obtained using the above intensitymethod
for all types of signed three-neuron motifs ordered by their corre-
sponding unsigned motif types. The colors in the plot represent each
unsigned type (see Supplementary Fig. 6 for the full set of signed
connectivity patterns). Interestingly, the most salient motifs were the
same for the different visual stimuli. Specifically, the top six over-
represented motifs are the same for different stimuli tested here
(Fig. 2D, motif ID = p6, p9, p10, p11, p12, p13). In addition to these
significantly over-represented motifs, the same three types of motifs
were significantly under-represented for all stimuli (ID = p4, p5, p8).
Interestingly, all 6 over-represented motifs contain at least one posi-
tive FFL (pFFL) structure (ID = p6, Fig. 2D) with the only difference
among thembeing the number ofmutual connections that accompany
the pFFL structure. The last five of these over-representedmotifs were
studied without edge signs in previous works as ‘mixed-feedforward-
feedback loops’ and have been found to be correlated to memory, as
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Fig. 2 | Highly preserved local structure duringdifferent types of visual stimuli.
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progressive increase in the number of preserved network properties. The pre-
served properties are the number of nodes (V)/edges (E), degree distribution,
neuron-pair distribution and signed-pair distribution, respectively. The real net-
work used to generate the synthetic networks is sampled from an example session
during drifting gratings.BRelative count of signed neuron pairs using Erdős–Rényi
model. All three types of bidirectional pairs are considerably over-represented. Box
plots indicate median (middle line), 25th, 75th percentile (box) and minimum and
maximum (whiskers), n = 7mice.C 13 types of motifs without edge signs. Examples
of signed motifs based on Feedforward Loop structure (motif ID = 6) are shown.
Positive-FFL-based (pFFLb) motifs are defined as motifs with at least one FFL

structure consisting of all positive connections. Note that pFFLb motifs can be
classified into four types based on the number ofmutual connections: zero (ID = 6),
one (ID = 9, 10, 11), two (ID = 12) and three (ID= 13). In what follows, we use the
prefix “p”or “n” to denote signedmotif typeswith only positive connections or only
negative connections, respectively. D Motif intensity significance sequences of all
signed motifs (signed three-neuron subnetworks). Each row shows results for a
certain stimulus type and each color corresponds to a certain unsigned motif
structure. Motif intensity significance for each signedmotif is obtained through its
intensity Z-scoreof the empirical networkwith Signed-pair-preservingmodel as the
reference. The overall sequences are highly similar across visual stimulus classes,
with six types of over-represented motifs (pFFLb motifs) and three under-
represented motifs preserved. It is worth noting that the above-mentioned nine
significant motifs only contain positive connections.
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well as acceleration and delay of response78. Here we denote all six of
the over-represented signed motifs as positive-feedforward-loop-
based (pFFLb) motifs.

In addition to the three highly under-represented motifs (ID = p4,
p5, p8), the set of under-representedmotif patterns consists largely of
‘unclosed’ pFFLb motifs, suggesting that neurons tend to form
pairwise-connected triplets. This under-representation of unclosed
motifs appears to be more pronounced with higher network density.
Interestingly, themotifs’ average absolute intensity Z-scores (deviation
from the frequency expected by chance) increases significantly with
increasing network density (Fig. 3A; Wald test, two-sided). With more
connections, the empirical functional network deviates more strongly
from randomized surrogate networks, highlighting the fundamental
non-randomness of local functional connectivity.

Note that it is important to examine the whole significance dis-
tribution of motifs instead of focusing on merely the most striking
ones. Varying the threshold on significant motifs naturally changes
their total count, but importantly, it does not substantially change the
relationshipbetween the functional connectivity patternsobserved for
the different stimuli (Supplementary Fig. 7B). Our control analysis has
led us to the conclusion that the presence of non-random local
topology of functional networks is contingent upon the density of the
network (Fig. 3A), which is, in turn, modulated by sensory input
(Fig. 1E). Meanwhile, the same sets of two- and three-neuron con-
nectivitymotifs are over- andunder-represented for all 6 visual stimuli.

Our analysis of the connectivity motifs relies on comparing motif
frequencies in the observed network to those reference networks that
are similar in some way to the observed network but are otherwise
randomized. Notably, there aremany different ways to define random
networks by preserving certain network properties. For example, the

commonly used Erdős–Rényi reference network preserves the net-
work density. Other reference models can preserve the degree dis-
tribution, the neuron pair distribution, or the signed neuron pair
distribution (Fig. 2A; Methods). To understand how our motif analysis
depends on the choice of reference model, we computed the three-
neuron motif intensities for the natural movie stimulus for 4 different
reference models with increasingly more preserved network proper-
ties (from left to right in Fig. 3F). As a result, the overall significance
level for all motif types roughly decreases in the same order, and the
most strictly conserved reference model, the signed pair-preserving
reference model, is better in identifying the small subset of motifs for
which the observed network is most truly non-random. Therefore, we
use the signed pair-preserving reference model as our default refer-
ence model throughout this study.

To test the robustness of our results, we separately calculated the
motif distribution patterns on distinct halves of the trials from our nat-
ural scene stimulus data. The high consistency between the motif dis-
tributions on the two data splits (Supplementary Fig. 8) suggests that
noise within the dataset is unlikely to be a key factor in our results.
Furthermore, pFFLb motifs consistently emerge as the most salient
motifs across different stimuli at various significance levels (Supple-
mentary Fig. 9), with increasedCCGwindowsize (Supplementary Fig. 10)
and when considering potential joint modulation from unobserved
neurons (Supplementary Fig. 11). Taken together, pFFLb motifs seem to
be reliably themost significant patterns among three-neuron subgraphs.

Properties of over-represented three-neuron motifs
While the three-neuron functional motifs that were most over- or
under-represented were the same for all stimuli (Fig. 3B), thosemotifs
were composed of different neurons for different stimulus types
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(Fig. 1F), there is also a logarithmic relationship between motif significance and
density (Wald test, two-sided). B Pairwise correlation of normalizedmotif intensity
distribution for six visual stimuli. High correlation proves the similar motif pre-
sence during different types of stimuli. C Signal correlation during four visual
stimuli (except for resting state and flash) for within-pFFLb-motif connections and
other connected neuron pairs. *p <0.05, **p <0.01, rank-sum test, one-sided. Error
bars represent 95% confidence interval,n = 7mice.D Fraction ofmotifs with at least
one V1 neuron or all three V1 neurons during all visual stimuli for six over-
represented positive-feedforward-loop-based (pFFLb) motifs. The variation in
regional composition indicates the changeof constituent neurons for pFFLbmotifs
across different visual stimuli. Error bars represent 95% confidence interval.

E Intersections of unique motif sets for motif ID = p6 during six types of stimuli.
Horizontal bar plot shows the number of signed motif ID = p6 for each type of
stimulus while vertical bar plot displays the size of each intersection set. A unique
motif is defined as a certain signed motif with three specific neurons, and inter-
sections with less than 20 elements are removed for brevity (see Supplementary
Fig. 12 for the complete results on all pFFLb motifs). A large number of unique
motifs appear only during one type of stimuli, demonstrating that even though
functional motifs are preserved across visual stimuli, constituent neurons are
changing. FMultiple motif intensity significance sequences were obtained through
four different reference models for natural movies as the representative stimulus
type. Motif order (clockwise) and color are consistent with (D) and Fig. 2D, and
connectivity pattern is shown only once for each type of most significant signed
motif for brevity.
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(Fig. 3D, E). Specifically, while most pFFLb motifs contained at least
one neuron from V1, the fraction containing all 3 neurons within V1
varied substantially as the stimulus type changed. (Fig. 3D).

To further quantify the extent to which the same neurons con-
stitute pFFLbmotifs across stimuli, we computed the number of pFFLb
motifs sharing exactly the same neurons for all pairs of stimuli (inter-
section sizes), as shown in Fig. 3E for one example over-represented
pFFLb motif (ID = p6; results for all of the over-represented pFFLb
motifs are shown in Supplementary Fig. 12). We also compared motif
overlapping detected using half the trials of the same stimulus type
and using different stimuli (Supplementary Fig. 8C). Notably, pFFLb
motifs were more likely to be composed of the same neurons during
the same stimulus type than for different types, indicating that the
identities of the neurons within the over-representedmotifs change as
the stimulus type changes.

Taken together, these results and those in Fig. 2D, indicate that, as
the stimulus type changes, the same three-neuron motifs are over- or
under-represented in the cortical networks, but the identities of the
neurons within those motifs change. This suggests that these specific
motifs might have strong functional importance for the cortical
microcircuit because even as different stimuli dynamically alter the
functional connectivity, they do so in a way that preserves thesemotif
patterns. To further investigate this question, we analyzed the tuning
similarity of these motifs. As a control, we compared the tuning pro-
files of connected neurons that are not within the same pFFLb motifs.
We found the signal correlation between pairs of connected neurons
within the same pFFLb motif were significantly higher than those not
within the same pFFLb motif (Fig. 3C; rank-sum test, one-sided), and
neurons within the same pFFLbmotif are spatially closer to each other
than otherwise (Supplementary Fig. 7A, right; rank-sum test, one-
sided). Furthermore, neuron pairs within pFFLb motifs show stronger
functional connection strengths and higher CCG Z-scores than other
connected neuron pairs (Supplementary Fig. 7A; rank-sum test, one-
sided). Thus, the pFFLb motifs tend to consist of functionally-similar
neurons. These observations are consistent with previous reports of
synaptic connectivity patterns in visual cortex1.

Overall, these analyses indicate that neuron pairs within the over-
represented pFFLb motifs tend to be spatially near each other, and to
have higher functional similarity compared to other pairs. Coupled
with the fact that these pFFLbmotifs are preserved across stimuli, this
highlights the potential functional importance of these motifs within
the cortical microcircuit.

Spatial and functional organization of network modules
depends on the stimulus
The adoption of network analysis in the investigation of neural
mechanisms underlying visual processing offers more than just the
exploration of elementary information processing components (e.g.,
three-neuronmotifs). It opens the door to a comprehensive examination
of how extensive neural populations, including modular structure,
engage in interactions. Those modules79,80 are thought to impart added
robustness81, efficiency82, and functional specialization55 to networks.We
thus sought to identify modules within our networks, and to determine
how their properties depend on the stimulus presented to the animal.

To achieve this goal, we revised the Louvainmethod83 to optimize
the Modularity estimation from previous work84,85 so as to take into
account the signs of the connections in our networks: this modified
Louvain method searched for sets of modules with most positive
connections inside the same module and negative connections
between differentmodules (seeMethods). Thus, themethod identifies
sets ofmoduleswhose neurons are internally correlated and externally
anti- or un-correlated. This greedyoptimization yields the groupingsof
neurons intomodules bymaximizing the score ofmodifiedModularity
(see Methods). For comparison, we also identified modules with the
originalModularity algorithm that does not take into account the edge

signs81. Although our adapted method revealed results qualitatively
similar to the original one (Supplementary Fig. 13), the identified
module size using our method is relatively smaller, suggesting a finer
scale module detection with our method.

Unless otherwise stated, in the rest of this paper Modularity
means the modified Modularity for signed module detection. By
maximizing the two-dimensional Modularity difference map whose
dimensions correspond to resolution parameters for positive and
negative links, we determined the optimal resolution parameters that
control the scale of identified modular structure so that the empirical
network deviates most from the null model15,86 (see Methods; Sup-
plementary Fig. 14A). In light of the potential limitations posed by a
fixed resolution parameter, we analyzed multi-resolution module
partitioning and found consistent results (Supplementary Fig. 14B–D).

After identifying the best parameters, we applied our module
detection algorithm to the observed functional networks from each
stimulus type, and compared the results between stimuli. During
gratings and natural stimuli, functional networks tend to exhibit
stronger modular structures, characterized by larger deviations in
Modularity from expectation (Fig. 4A, bottom Z-score, 52.04 ± 5.16;
mean± sem, n = 4 stimulus types over 7 mice). On the contrary, the
networks obtained from flashes and in the resting state were less
modular (4.18 ± 4.14; mean± sem, n = 2 stimulus types over 7 mice;
p = 5.23 × 10−7, rank-sum test, one-sided).

Anatomically parcellated brain regions are thought to work as
natural modules with specialized functions87–90. We thus wanted to
understand how our functionally-defined modules relate to the
anatomically-defined brain regions. To achieve this goal, we analyzed
the identified functional modules to understand the extent to which
their spatial organization coincided with the anatomically-defined
brain regions, and the extent to which that depended on the stimulus.
To do this, we computed three measures from the modules for each
stimulus (Fig. 4B, left). First, the coverage quantifies the maximum
extent to which a given module covers all of the neurons in any single
brain region. Second, the purity quantifies the maximum extent to
which a given module is contained within any single brain region.
These twoquantities are computed for eachmodule, and the results in
Fig. 4C show their weighted average (averaged over modules, weigh-
ted by module size). A more detailed module-by-module analysis is
presented in Fig. 5, below. Finally, the adjusted rand index (ARI)
quantifies the similarity between how the modules partition the set of
neurons, and how the brain regions partition the set of neurons.
Intuitively, these measures revealed the properties of modular struc-
ture from different perspectives: high coverage means at least one
visual area is covered by the module, high purity means that a module
consists of neurons from the same visual area, and high ARI means the
overall module partitioning highly resembles the areal organization.

These three measures all show variation in the module organiza-
tion for different stimuli (Fig. 4C).Onewould usually assume that long-
range and inter-areal connections are needed for more demanding
tasks91,92. However, for natural images andmovies, the modules have a
higher propensity to cover only a subset of a brain region than for
drifting and static grating stimuli. This is reflected by lower coverage
scores and higher purity scores for the natural image and movie net-
works than for the drifting and static grating networks (Fig. 4C;
p =0.0029, p =0.0002, rank-sum test, one-sided). Therefore, it
appears that enhanced within-areal connections play a beneficial role
in visual computation which could be more important in the proces-
sing of natural stimuli.

It is important to note that with increasing module size, coverage
tends to increase while purity tends to decrease, and the module size
does depend on the stimulus (Fig. 5B). As a result, it is important to ask
whether the variations in coverage and purity with visual stimuli could
be explained simply by stimulus dependence of module size. To
address this question, we compared module purity and coverage to
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module size (Supplementary Fig. 15). Consistently acrossmodule sizes,
the modules in the flashes stimulus and resting state networks had
lower coverage than did the networks for the other stimuli. The net-
work from the flashes stimulus also had consistently lower purity.

To further probe the relationships between module size and
coverage or purity, we analyzed the number of modules obtained for
each stimulus that were above a given threshold of module size,
threshold of module coverage, or threshold of module purity.
Repeating this for many threshold values (Fig. 5B), we found that
natural images and movies had the largest numbers of high-purity
modules even though their numbers of small modules were not
appreciably different from the other stimuli. Thesefindings emphasize
that the stimulus-dependent module properties we report in Fig. 4C
cannot entirely be attributed to stimulus-dependent module sizes.

In general, the similarity between functional module partitioning
and the anatomical areal organization is higher during gratings and
natural stimuli and lower during resting state and flashes, suggesting
that functional connectivity tends to be more constrained by
the anatomical structure and more spatially compact during complex
and natural stimuli. This is reflected in the lower ARI values for the

flashes and spontaneous activity (Fig. 4C; p = 4.0 × 10−7, rank-sum test,
one-sided).

Consistent with previous work69,93, functional motifs seem to be
more pronounced in more modular networks (Supplementary
Fig. 16F), suggesting their shared organizational principles. Similar to
motifs, we also tested the functional similarity of nodes within and
across modules by measuring the signal correlations of connected
neuron pairs. Neuron pairs within the same module had higher signal
correlations than did neuron pairs that were not (Fig. 5A), and the
probability of any two connected neurons being in the same module
also increases with signal correlation (Supplementary Fig. 16A;
Cochran–Armitage test, two-sided). Thesefindings were consistent for
the 4 visual stimuli for which the signal correlations are well-defined,
andwere consistent across brain regions withmodules assigned to the
brain region from which most of their neurons came (Fig. 5D, E).
Functional interactions tend to be found between neurons with more
similar receptive fields across most scenarios concerning areal and
modular structures, although how strongly interactions depend on
receptive field similarity varies (Fig. 5F). This shows that functional
modules are finer-scale partitions, displaying both the similarity and
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dissimilarity between anatomical and functional parcellation. These
observations emphasize that the modular structure promotes func-
tional specialization55.

Our analyses of the modular organization of the functional net-
works reveal that the modules tend to contain neurons with similar
stimulus tuning, and that their spatial organization and alignment with
anatomical brain regions dependon the stimulus typepresented to the

animal. This emphasizes that a functional module is not strictly the
same as an anatomical brain region: the relationship between these
concepts depends on the stimulus-defined context.

Discussion
We studied the topology ofmicro-scale functional networksmeasured
with single-neuron spiking activity in the mouse visual cortex. These
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data were collected while the mice were exposed to different types of
visual stimuli, and we separately analyzed the functional networks
observed in the responses to each stimulus type. Thus generated
functional networks could differ from the underlying anatomical
connectivity, and this disparity warrants cautionwhen interpreting the
connectivity graphs. However, our science question, concerning
stimulus-dependent interactions between neurons cannot be
answered with the standard anatomical connection methods. For this
reason, we used functional connectivity measures for this study.

We found that functional networks display stimulus-dependent
network properties such as varying density, clustering coefficient and
fraction of positive connections. Furthermore, we provide evidence
that the distribution of low-order connectivity patterns (motifs with 2
or 3 nodes) remains stable, characterized by over-representation of a
specific group of 3-neuron motifs, pFFLb motifs. This over-
representation was preserved across the wide range of stimuli we
investigated. Notably, while these motifs were over-represented in all
cases, the constituent neuronswithin thosemotifs changed. Finally, we
observed that the module-level network architecture depends sig-
nificantly on the stimulus type.

The consistent over-representation of pFFLbmotifs suggests that
they are key information-processing components of neural circuits.
While these motifs were over-represented for all stimuli, the identity
and areal distribution of neurons constituting the pFFLb motifs dif-
fered between stimuli. Thus it is the three-neuron patterns rather than
the triadic interactions of specific neurons that are preserved. This
observation suggests that an important computational rolemight arise
at the motif level94–98, where neurons can dynamically reorganize to
form these relevant structures. These local computations, organized
by motifs, could remain robust to changes like the loss of individual
neurons because other neurons could be recruited into the motifs to
replace any that are lost. For this reason, motif-level computational
organization could provide substantial robustness to cortical
computation.

The abundanceof FFLmotif has beenobserved in numerous types
of networks including gene regulatory networks70, transportation
networks99, engineered networks67 and neuronal networks1,67,99. Motif
ID = p6 (pFFL) is proven to be a sign-sensitive filter that responds only
to persistent stimuli in transcriptional regulation networks70 andmulti-
input FFL generalization is found to store memory as well as reject
transient input fluctuations in neuronal networks52. For anatomical
networks of neurons, there have been modeling work showing that
certain pFFLb motifs (p9, p10) can function as long-term memories of
the input, thus playing an important role in many cognitive tasks78.
Therefore, the pFFLb motifs that we found to be consistently over-
represented in cortical functional networks may have important
functional roles in cortical computation.

On the global scale, however, natural stimuli tend to drive net-
works into more modular structures with stronger segregation and
stronger agreement between structural and functional parcellation.
Although the extensive inter-areal connections and modules evoked
by gratings could result from the intrinsic spatial distribution of the
grating stimuli, the possibility of influence from oscillatory patterns
(Supplementary Fig. 17) has been ruled out. In comparison, the func-
tional modules with more spatially segregated structures evoked by
natural stimuli could play an important role in the processing of the
visual input. It is noteworthy that, major functional modules observed
when the animal was viewing natural scenes and movies are highly
overlapping at all spatial scales with almost the same neurons (Sup-
plementary Fig. 14B). These probably arise from the common subtasks
required by the visual processing of similar stimuli. One advantage of
having sharedmodular components is that it allows a faster adaptation
and possibly a lower switching cost of functional networks to various
tasks93. This reduction in functional reorganization costs could be
especially important given our observation that different neurons are

organized into the over-represented pFFLb motifs in the presence of
different stimuli.

Anatomical structure has been known to stay relatively stable
given different types of sensory inputs100. In comparison, functional
connectivity changes in such a fast and dramatic manner that some
even try to model its temporality within a single trial101. There are
various reasons for this rapid functional adaptation, which could be a
change of task36–39, perceptual states102, visual stimuli24,25,103, etc. How-
ever, most prior studies were either restricted to the primary visual
cortex, or to voxel-level recordings obtained through fMRI, or both. It
thus remains unclear whether the functional interactions on a single-
neuron scale across multiple cortical regions are also dynamically
adapted to the visual inputs. Onemajor aim of our study was to fill this
knowledge gap. By studying interneuronal functional connections, our
work could help improve our understanding of neuron-to-neuron
connections (e.g., at the synaptic scale). In contrast, studies of voxel-
scale functional connectivity based on fMRI data might be less infor-
mative about these finer-scale interactions.

One of the major challenges of studying functional connectivity
lies in the existence of negative correlations and anti-correlated pat-
terns: there is a lack of strong theoretical tools for analyzing networks
with both positive and negative edges104. While many studies on
functional connectivity disregard inhibition and only focus on positive
connections for simplicity, inhibitory connections that coulddisplayas
negative connections play a crucial functional role in visual
processing105,106. This highlights the need for a network analysis fra-
mework that possesses the ability to handle both positive and negative
edges. We address this problem by adopting and modifying motif and
module detection methods for signed networks, and used these
methods to investigate how (signed) functional networks vary on local
and global scales. The inclusion of edge sign in motif analysis enables
us to further distinguish motifs, since the same unsigned connectivity
could correspond to different functions depending on the edge
signs70. The definition of functional modules can be subjective
regarding whether to keep negative connections inside or between
modules. Nonetheless, we showed that even though qualitatively
similar conclusions can be drawn without distinguishing functional
inhibition from excitation (Supplementary Fig. 13), ignoring edge sign
(as in prior studies) could lead to a less detailed understanding of the
exact pattern of functional segregation and specialization.

While our detailed methods thus provide a more comprehensive
analysis of how functional connectivity flexibly adapts to the statistics
of visual input, we recognize some limitations to our analyses. First, we
donot distinguish neurons according to their cell types. This limits our
ability to relate our functional connectivity results to the growing lit-
erature on microcircuit architectures. In addition, due to incomplete
recording, we observe only a subset of the neurons in each brain area.
Correlation-based network inference can potentially lead to false
direct-edge identification via high-order connections or joint mod-
ulation from latent variables (unobserved units). These limitations are
inherent to single-unit neural activity-based construction of functional
connectivity, and not just to our study. Nevertheless, wedo not believe
that these common limitations constitute serious flaws in our analysis.
First, we are not trying to find functional networks that topologically
resemble the anatomical network, in which case the incomplete
recording issue would be quite detrimental, or effective/causal net-
works that reflect direct influence between neurons where latent
variables introduce a significant bias to the identified connectivity.
Instead, our focus is on the alteration of inter-neuronal interaction
patterns to different visual stimuli measured by correlated activities.
These interactions can be identified even in incomplete recordings.
Second, incomplete observation might explain the presence of non-
conforming edges in some of our analyses, such as the presence of
both positive and negative edges emanating from a single neuron. At
first glance, these neurons are at odds with Dale’s principle, which
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suggests that such bivalent neurons are very uncommon in the neo-
cortex. However, given the incomplete recordings, there could be
unobserved inhibitory neurons that mediate the effective inhibitory
impact of an excitatory neuron on some other neurons in the circuit.
Hence, the potential incorporation of indirect interactions within
functional connections enables the examination of effective interac-
tion between neurons, even with unrecorded units. Third, despite the
demonstrated efficacy of various methods to correct for latent vari-
ables in the construction of causal graphs107–110, the applicability of
these models in real-world analyses, particularly in the absence of
ground truth connectivity, remains uncertain. It is imperative to
underscore that, our study primarily focuses on functional con-
nectivity, which reveals correlations instead of causality between
neural activities under different stimulus conditions111. For this reason,
without presuming direct mechanistic interactions, jitter-corrected-
CCG-based functional connectivity that has been proven effective in
capturing the direction of information flow30,31 is not significantly
impacted by latent variables.

Additional limitations of our study arise from experimental con-
straints and the nature of the Neuropixels dataset collected from
extracellular electrophysiology probes. Kilosort2 was used to identify
spike times and assign spikes to individuals112, however, no current
spike sorting algorithm can ensure a completely accurate assignment
of observed spikes to individual neurons. This means certain nodes in
our network could correspond tomore than one neuron, or that there
could be multiple nodes corresponding to the same neuron113. Finally,
the limited set of visual stimuli used in our experiments could intro-
duce bias into our analysis since we do not havemultiple different sets
of stimuli within the same stimulus type. This limitation prevents us
from comparing the functional connectivity driven by distinct stimuli
within the same category (i.e., more different clips of natural movies).
On the other hand, we use a relatively wide range of natural image and
natural movie stimuli, and sampled multiple stimulus types of varying
complexity. While these laboratory conditions are much more con-
trolled than natural viewing conditions, we nevertheless have deter-
mined functional connectivity under a wide range of stimulus
conditions.

On the timescale of sensory processing, neuronal networks have
relatively fixed anatomical connectivity. Their functional connectivity,
however, can and does vary quite substantially. Our work revealed
striking patterns to this functional reorganization. These patterns
suggest potentially important principles governing cortical computa-
tion, such as the dynamical organization of groups of neurons into
feedforward loop motifs, and the adjustment of network modularity
based on stimulus complexity. Beyond their relevance for basic neu-
roscience, these findings may provide guidance for how to engineer
dynamically robust information processing systems.

Methods
Dataset
We analyzed the Neuropixels dataset from Allen Institute30. The Neu-
ropixels project uses high-density extracellular electrophysiology
probes to record spikes frommultiple regions in themousebrain. Data
used to construct functional networks are recordings of the neural
activity by 6 Neuropixels probes in 6 visual cortical areas (V1, LM, RL,
AL, PM, AM) from 7 mice while the mice passively viewed a visual
stimulus set that contains 6 types of visual stimuli with multiple
repeats: gray screen (simulation for resting-state activity), flashes,
drifting gratings, static gratings, natural scenes and naturalmovies. On
average, there are 668 ± 131 units simultaneously recorded for each
mouse. In order to make a fair comparison across different visual sti-
muli, only neurons with a firing rate of at least 2 Hz during all stimuli
are included in our analysis, thus the number of neurons (size of the
functional network) is the same for eachmouse given different stimuli.
As a result, there are 176 ± 44 units on average for each mouse.

Cross-correlogram and significant functional connection
Functional connectivity is measured through Cross-correlograms
(CCGs)114. For each stimulus type, the average CCGs across all stimu-
lus presentations is calculated. In order to focus on the change in
connectivity driven by different stimulus types, we dismissed stimulus
conditions and used all presentations as trials. CCG for lagged corre-
lation from neurons A to B is defined as

CCGABðτÞ=
1
M

PM
i = 1

PN
t = 1x

i
AðtÞxi

Bðt + τÞ
θðτÞ

ffiffiffiffiffiffiffiffiffiffi
λAλB

p ð1Þ

whereM is the number of trials,N is the number of time bins, xi
A and xi

B
are the spike trains for neuron A and neuron B, τ ≥ 0 is the time lag
between the spike trains, θ(τ) =N − τ represents a triangle function that
corrects for the overlap time bins, λA and λB are the mean firing rates
for the two neurons. It is worth noting that we only allow for non-
negative time lag for the sake of bidirectional connections. We used
the jitter correction method to remove slow temporal correlations115.
The spike trains are split into short jitter windows with equal size and
the spike-jittermethodperturbs the spike timingwhilemaintaining the
number of spikes within each jitter window to disrupt fast-time
correlations. Jitter correction has been widely used to eliminate the
shared trial-to-trial variability on a slower time scale116. The jitter-
corrected CCG is obtained as the difference between CCGs of the
original and jittered spike trains

CCGjc =CCG� CCGjittered ð2Þ

The size of the jitter window is defined as 25ms. Apart from using
‘sharp peaks’ to define significant functional connections, we also
included ‘sharp intervals’ to take into consideration the polysynaptic
connections between neuron pairs with potentially multiple time lags.
Specifically, for a given duration D∈ [1, τmax + 1], where τmax = 12ms
similar to the 13ms window in previous work31, the set of moving
average CCG is obtained by

CðDÞ= 1
D

Xt1 +D�1

τ = t1

CCGjcðτÞ, t1 2 ½0,T � D+ 1�
( )

ð3Þ

where T is the total length of spike trains. Therefore, there is a positive
connection if

1
D

Xt0 +D�1

τ = t0

CCGjcðτÞ>μCðDÞ +nσCðDÞ ð4Þ

and a negative connection if

1
D

Xt0 +D�1

τ = t0

CCGjcðτÞ<μCðDÞ � nσCðDÞ ð5Þ

where t0∈ [0, τmax −D + 1] is the starting time lag of the ‘sharp peak/
interval’, μC(D), σC(D) are the mean and standard deviation of C(D), n = 4
denotes the 4-fold significance level in our experiment. It is
straightforward that D = 1 indicates a ‘sharp peak’ while D > 1 denotes
a ‘sharp interval’. If equation (4) or (5) is true on multiple durations
D∈ {D1,D2,⋯ ,Ds},D1 <D2 <⋯ <Ds, we assume the smallest duration
D =D1 since it always leads to the highest significance level.

CCG peaks with zero time lag are explained by dynamical relaying
mechanisms instead of common drive117,118, thus are usually treated as
bidirectional connections42. Considering our CCG method can detect
bidirectional connections with non-zero peaks, for connections with
zero time lag, we retain the primary direction of communication,
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defined as the directionwith a higher significance level. The alternative
direction retains its significance when a non-zero significant peak or
interval is observed.

Therefore, each directed connection was characterized by its lag,
the duration of the significant interval in the CCG, and its significance
value. Lag τ is the delay between spike trains of source neuron and target
neuron. The duration Dmeasures how long the significant peak/interval
lasts, and the connection significance signals the Z-score of the ‘sharp
peak/interval’. Lags τ of across-area connections are higher than within-
area connections (Supplementary Fig. 2C), which is as expected since it
takes more time for a signal to travel between areas than within an area.

It has been shown that a sufficiently large number of spikes for both
neurons are necessary tomake the detection reliable119, which is directly
presented by the CCG. To eliminate the bias brought by insufficient
spikes, we used normalized entropy, defined as the Shannon entropy of
the CCG divided by the maximum of entropy, to keep only reliable
connections where both neurons have enough spikes. We used a
threshold of 0.9 onnormalized entropy, andmost removed connections
are found during flashes and are due to the shortage of trials.

Reference model and signed motif analysis
Since functional networks are constructed as signed networks, signed
motif analysis needs to be defined. Similar to unsigned motif detec-
tion, to examine the statistical significance of signed n-neuron motifs
in the networks, we generated random networks using various refer-
ence models as the baseline and conducted a comparative analysis of
motif frequencybetween the empirical network and randomnetworks.

Three types of commonly used reference models are adopted in
this work: Erdős–Rényi model, Degree-preserving model and Pair-
preserving model. However, they are all defined on unsigned net-
works. In order to tailor these models for analysis in the context of
signed networks, we randomly assigned original edge signs to refer-
ence networks randomized using Erdős–Rényi model, Degree-
preserving model and Pair-preserving model. Furthermore, we
defined the Signed-pair-preservingmodel bypreserving the edge signs
for each neuron pair in the Pair-preserving model during shuffling
(Fig. 2A). Therefore, surrogate networks generated using all four
reference models have the same number of positive/negative con-
nections as the real network.

Table 1 lists the comparison between all four reference models.
Erdős–Rényi model randomly shuffles connections while preserving
network size, density and weight distribution77, Degree-preserving
model generates random networks while preserving size, density,
weight distribution and degree distribution120, Pair-preserving model
randomizes the network while keeping size, density, weight distribu-
tion, degree distribution and neuron pair distribution67 while the
Signed-pair-preserving model preserves the signed pair distribution
(Fig. 2A) in addition to the first three properties. Furthermore, we also
preserved the discretized distribution of anatomical distance between
neurons (Supplementary Fig. 5) to test whether spatial distribution has
an impact on the findings. However, we used Signed-pair-preserving
model for signed motif analysis due to limited data of spatial infor-
mation. For all analyses including a reference model, we randomly
generated 200 surrogate networks.

For two-neuronmotif analysis, we adopted Erdős–Rényi model as
the referencemodel and computed the relative count for each type of

two-neuron connection by dividing the count of the empirical network
and the average count of surrogate networks. For simplicity, we only
focused on three-neuron subnetworks apart from two-neuron sub-
networks during motif analysis. We used the Z-score of intensity
compared with reference models to determine motif significance76.
The intensity of a certainmotifM is defined as the summation over the
intensities of all subgraphs g that have the structure of M

IðMÞ=
X
g2M

IðgÞ ð6Þ

where the intensity of a certain subgraph is defined as the geometric
mean of all its connection strengths

IðgÞ=
Y
ij2lg

wij

0
@

1
A

1
jlg j

ð7Þ

where lg denotes the set of connections in g and wij is the strength of
the connection from neuron i to j. Then the Z-score of intensity for
motifM can be computed as

ZM =
IM � iM

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i2M

D E
� iM

� �2r ð8Þ

where iM is the total intensity of motif M in one realization of the
reference model. To reduce noise from individual mice, we removed
outliers of ZM for each stimulus type from our analysis based on a
threshold of 2 standard deviations.

Signed module detection
The original Modularity used to detect community structure for

directed networks121 is defined as Q̂= 1
m

P
ij ½Aij �

kin
i kout

j

m �δðσi,σjÞ, whereA
is the adjacencymatrix of the network,m is the number of links, kin, kout

represent the in-degree and out-degree, respectively. δ is the Kro-
necker delta function and σidenotes the community label that node i is
assigned to. In the presence of negative links, we denote A+

ij =Aij if Aij ≥

0 and zero otherwise, A�
ij = � Aij if Aij ≤ 0 and zero otherwise, so that

A =A+ −A−. In order to cluster nodes towards social balance, frustration
metric 122, defined as

P
ijðλA�

ij � ð1� λÞA+
ij Þδðσi,σjÞ, has been proposed.

However, neither is suitable for partitioning signed networks. In this
workwe adoptedmodifiedModularity for community detection of the
signed, weighted and directed CCG network. ModifiedModularity of a
certain partition σ is defined as the weighted combination of the
positive and negative parts84,85

QðσÞ= m+

m+ +m� Q+ ðσÞ � m�

m + +m� Q�ðσÞ ð9Þ

where

Q+ ðσÞ= 1
m+

X
ij

ðA+
ij � γ + p+

ij Þδðσi,σjÞ ð10Þ

Table 1 | Reference models

Reference model size & density & weight degree distribution pair distribution signed pair distribution

Erdős–Rényi model ✓ × × ×

Degree-preserving model ✓ ✓ × ×

Pair-preserving model ✓ ✓ ✓ ×

Signed-pair-preserving model ✓ ✓ ✓ ✓
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Q�ðσÞ= 1
m�

X
ij

ðA�
ij � γ�p�

ij Þδðσi, σjÞ ð11Þ

γ+ and γ− are the resolution parameters, m+ and m− are the number of
positive and negative connections, respectively, p+ and p− are the
connection probabilities for positive and negative links, respectively.
Here, we take into consideration degree distribution by defining the

probabilities aspij
± =

± kout
i

± kin
j

m± , where ± kout
i is the positive/negative out-

degree of neuron i and ± kin
j is the positive/negative in-degree of

neuron j. Therefore, equation (9) can be rewritten as

QðσÞ= 1
m+ +m�

X
ij

½Aij � ðγ + p+
ij � γ�p�

ij Þ�δðσi, σjÞ ð12Þ

The Louvain method is a module (community) detection algo-
rithm for partitioning networks into groups of nodes with dense
connections within groups and sparse connections between groups83.
The algorithm uses the original Modularity Q̂ as a quality function to
optimize the partitioning of the network σ. The Louvain method
operates through a series of iterative steps that merge neighboring
modules to maximize the Modularity gain until a locally optimal par-
tition is reached. The algorithm uses a bottom-up approach, starting
from single-node modules, and iteratively merges modules to form
larger ones. To take into consideration edge signs, we revised the
quality function in the Louvain method from original Modularity Q̂ to
modified ModularityQ. Therefore, the modified Louvain method aims
tofind anoptimalpartitionof nodes such thatpositive connections are
placed within modules while negative connections are between
modules.

In order to determine the resolution parameters for module analy-
sis,weobtainedaModularitydifferenceheatmapbyvaryingγ+ and γ− and
computing the difference between Modularities of empirical and surro-
gate networks generated by the Signed-pair-preserving model, then
looked for the γ+ and γ− that maximize the difference15. This way we
obtained the modular partitioning that is least random. We used the
Z-score of Modularity to show how modular a functional network is
through comparison with a reference model (Signed-pair-preserving
model). The Z-score of Modularity is defined as

ZQ =
Q� q

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2
� �� q

� �2q ð13Þ

where q is the Modularity in one realization of the reference model.
Only modules with a size of at least four neurons are included in
subsequent analysis to eliminate the noise influence of isolated single
neurons, pairs and triplets. Note that we included connection strength
in both motif and module analyses. The CCG peak values represent
connection strengths, i.e., we use absolute sum of positive/negative
connection weights instead of number of positive/negative connec-
tions and the positive/negative degree of a neuron is replaced by total
positive/negative connection weights. Unless otherwise stated, Q
represents the modified Modularity for signed networks. When
visualizingmodular structure, the location of each node is determined
by applying the Fruchterman-Reingold Layout recursively on the
hypergraph and then the subgraph of each community (python
package Netgraph).

Analysis of modular structure
Tomeasure the fundamental properties ofmodular structure, we used
(weighted average) coverage, (weighted average) purity and Adjusted
Rand Index (ARI) to show how neurons from different visual areas are
clustered together. Coverage, defined as maxj

jMi\Aj j
jAj j and purity,

defined as maxj
jMi\Aj j
jMi j , are module-level metrics, while their weighted

averages (WA) with module size as weight are network-level metrics.
The WA coverage is

P
imaxj

jMikMi\Aj j
jAj jP

ijMij
ð14Þ

whereas the WA purity is

P
imaxjjMi \Aj jP

ijMij
ð15Þ

For each module partition, we also used Adjusted Rand Index
(ARI) to measure its similarity to areal organization for each network.
Based on the contingency Table 2, ARI is defined as

ARI =

P
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Multi-resolution module partition
To reduce noise in module partition, we focused on the most active
neurons that have at least 1 connection during all stimuli when
examining howmodule partition changes with resolution parameters.
Since the modified Louvain method is stochastic, 200 independent
runs were carried out for partitioning any empirical network. To
comparemodule partitioning results across resolution parameters, we
combined multiple partitioning results based on a voting mechanism
that keeps frequent modules. In our algorithm, we first recorded the
module assignment for each node during each run of the modified
Louvain algorithm, initially labeling all nodes as unassigned. For the
unassigned nodes, we then updated votes for their modules based on
module appearances across all runs. Subsequently, we assigned each
unassigned node to themodulewith themost votes. The last two steps
were iterated until all nodes were assigned to a module.

Due to the significantly greater abundance of positive connec-
tions compared to negative connections, the parameter γ+ exerts a
substantially more pronounced effect on the outcomes of module
partitioning than γ−. Consequently, we limited the range of variation
for γ−while placing greater emphasis on the alignment and comparison
of module identity with γ+ across a broader range of values.

To compare module partitions across multiple resolutions, we
assigned module IDs to modules across resolutions based on their
hierarchical structure and produced a visualization of the resulting
heatmap. To accomplish this, we started from the highest resolution,
and traversed through the resolutions in reverse order. For the highest
resolution, we assigned each module a unique ID.

Table 2 | Contingency table for module partition
M= fM1,M2, . . . ,Mrg and visual areal organization
A = fA1,A2, . . . ,Asg

A1 A2 ⋯ As sums

M1 n11 n12 ⋯ n1s a1

M2 n21 n22 ⋯ n2s a2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

Mr nr1 nr2 ⋯ nrs ar

sums b1 b2 ⋯ bs

Mi denotes the set of neurons in the i-thmodulewhileAj represents the set of neurons in the j-th

visual area. Sinceweonly focusonsixcortical areas, thus s = 6. Eachentrynijdenotes thenumber
of neurons that are assigned into moduleMi are from visual area Aj: nij = jMi \Aj j.
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Then for each module under subsequent resolutions, we identi-
fied its largest submodule from the previous resolution and deter-
mined that its ID should be inherited from the submodule. To achieve
this, we considered the modules from the previous resolution and
calculated their overlaps with the current module. We selected the
submodule(s) with the maximum overlap and retrieved the corre-
sponding ID(s) assigned to it. These ID(s) were assigned to the current
module, ensuring consistency and preserving the hierarchical rela-
tionship across resolutions.

Once the module IDs were assigned to the modules for all reso-
lutions and stimuli, we sorted the nodes within each area based on
their combined similarity across all stimuli to ensure an intuitive
visualization. Specifically, we employed a two-opt optimization algo-
rithm to determine an optimal node order that maximizes the simi-
larity between module IDs of adjacent nodes across resolutions. The
object is to minimize the hamming distance between 10 adjacent
nodes, making neighboring nodes more likely to have similar module
IDs across resolutions.

Statistical analysis
Since module partitioning and the generation of surrogate networks
are both stochastic, each analysis involving detection of modular
structure or generation of surrogate networks is performed with 200
independent runs. We adopt Cochran–Armitage trend test to assess
the association between categorical variables and Chi-squared test
for comparing the distribution of categorical variables. Wilcoxon
rank-sum test is used to compare population mean of two groups.
Kolmogorov–Smirnov test is used to test whether a distribution is
the largest among a set of distributions. Benjamini/Hochberg
method is used to correct p value for false discovery rate in multi-
ple tests.

We use the modified asymptotic (MA) test for comparing corre-
lations between the firing rate of a neuron and its number of within-
area/across-area connections123. Since the two correlations in the test
involve a common variable (firing rate), a test for overlapping corre-
lations is adopted. Suppose r1, r2 and r3 are the correlations between
firing rate and within-area connections, firing rate and across-area
connections, and within-area and across-area connections, respec-
tively. The MA method defines the confidence limits (L,U) for the
correlation difference r1 − r2 as

L= r1 � r2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr1 � l1Þ2 + ðu2 � r2Þ2 � 2dcorrðr1, r2Þðr1 � l1Þðu2 � r2Þ

q
ð17Þ

U = r1 � r2 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1 � r1Þ2 + ðr2 � l2Þ2 � 2dcorrðr1, r2Þðu1 � r1Þðr2 � l2Þ

q
ð18Þ

where l, u are the confidence limits for single correlation r with a sig-
nificance level α

l = r � zα
2

ffiffiffiffiffiffiffiffiffiffiffiffiffidvarðrÞq
ð19Þ

u = r + zα
2

ffiffiffiffiffiffiffiffiffiffiffiffiffidvarðrÞq
ð20Þ

where dvarðrÞ= ð1�r2Þ2
n and n is the sample size. The correlation between

the two correlations dcorrðr1, r2Þ can be estimated by

dcorrðr1, r2Þ= dcovðr1, r2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidvarðr1Þdvarðr2Þq ð21Þ

where covariance dcovðr1, r2Þ between the two correlations can be
obtained through

dcovðr1, r2Þ= ðr3 � 1
2 r1r2Þð1� r21 � r22 � r23Þ+ r33

n
ð22Þ

Therefore, if L(r1, r2) > 0, r1 is considered significantly higher than
r2 with significance level α; on the contrary, if L(r2, r1) > 0, r2 is con-
sidered significantly higher than r1 with significance level α.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the data analyzed in this manuscript is part of the Allen Brain
Observatory introduced in ref. 30. The rawdata used to generatemain
text figures is available for download in Neurodata Without Borders
(NWB) format via the AllenSDK. Example Jupyter Notebooks for
accessing the data can be found at https://allensdk.readthedocs.io/en/
latest/visual_coding_neuropixels.html. Source data for main text fig-
ures are provided as a Source Data file. Source data are provided with
this paper.

Code availability
Code for analyses in the manuscript and generation of figures are
available from the repository: https://github.com/HChoiLab/
functional-network.
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